Symmetric powers of complete modules over a two-dimensional regular local ring

被引:21
作者
Katz, D [1 ]
Kodiyalam, V [1 ]
机构
[1] UNIV KANSAS,DEPT MATH,LAWRENCE,KS 66045
关键词
D O I
10.1090/S0002-9947-97-01819-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (R,m) be a two-dimensional regular local ring with infinite residue field. For a finitely generated, torsion-free R-module A, write A(n) for the nth symmetric power of A, mod torsion. We study the modules A(n), n greater than or equal to 1, when A is complete (i.e., integrally closed). In particular, we show that B . A = A(2), for any minimal reduction B subset of or equal to A and that the ring +(n greater than or equal to 1)A(n) is Cohen-Macaulay.
引用
收藏
页码:747 / 762
页数:16
相关论文
共 13 条
[1]  
Bruns W., 1988, LECT NOTES MATH, V1327
[2]  
Buchsbaum D.A., 1964, T AM MATH SOC, V111, P197, DOI DOI 10.2307/1994241
[3]   A NEW CHARACTERIZATION OF RATIONAL SURFACE SINGULARITIES [J].
CUTKOSKY, SD .
INVENTIONES MATHEMATICAE, 1990, 102 (01) :157-177
[4]   ON UNIQUE AND ALMOST UNIQUE FACTORIZATION OF COMPLETE IDEALS .2. [J].
CUTKOSKY, SD .
INVENTIONES MATHEMATICAE, 1989, 98 (01) :59-74
[5]   BIRATIONAL EXTENSIONS IN DIMENSION 2 AND INTEGRALLY CLOSED IDEALS [J].
HUNEKE, C ;
SALLY, JD .
JOURNAL OF ALGEBRA, 1988, 115 (02) :481-500
[6]  
Huneke C., 1989, MSRI PUBL, V15, P417
[7]  
Kaplansky I., 1974, Commutative rings
[9]  
LIPMAN J, 1981, MICH MATH J, V28, P97
[10]  
Lipman J., 1969, PUBL MATH-PARIS, V36, P195