Cloaking of material objects by controlling the impedance boundary condition for Maxwell's equations

被引:5
作者
Alekseev, G. V. [1 ,2 ]
机构
[1] Russian Acad Sci, Inst Appl Math, Far East Div, Vladivostok 690022, Russia
[2] Fed Far East Univ, Vladivostok, Russia
基金
俄罗斯基础研究基金会;
关键词
(Edited Abstract);
D O I
10.1134/S1028335813110025
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The problem of masking for three-dimensional Maxwellian equations that describe scattering of electromagnetic waves in a homogeneous medium was studied. The medium contains a permeable anisotropic obstacle having a partially covered boundary. The role of control is played by the surface conductivity for the partially covered boundary. the three-dimensional model of scattering electromagnetic waves serves as a functional limitation. This model is considered under an impedance boundary condition at the covered part of the region boundary. Further, based on analysis of this system, it is determined that the sufficient conditions for the initial data, which provide the uniqueness and the stability of the optimal solutions for both the original quality functional and the incident wave.
引用
收藏
页码:482 / 486
页数:5
相关论文
共 15 条
[1]   Cloaking via impedance boundary condition for the 2-D Helmholtz equation [J].
Alekseev, G. V. .
APPLICABLE ANALYSIS, 2014, 93 (02) :254-268
[2]  
Alekseev G. V., 2010, OPTIMIZATION STEADY
[3]  
Alekseev G. V., 2012, DOKL AKAD NAUK, V447, P7
[4]  
Alekseev G. V., 2013, DOKL AKAD NAUK, V449, P652
[5]  
[Алексеев Геннадий Валентинович Alekseev Gennadiui Valentinovich], 2011, [Сибирский журнал индустриальной математики, Sibirskii zhurnal industrial'noi matematiki], VXIV, P3
[6]   A periodic surface structure with extreme acoustic properties [J].
Bobrovnitskii, Yu. I. ;
Morozov, K. D. ;
Tomilina, T. M. .
ACOUSTICAL PHYSICS, 2010, 56 (02) :127-131
[7]  
Bobrovnitskii Yu. I., 2012, DOKL AKAD NAUK, V442, P41
[8]   A uniqueness theorem for an inverse electromagnetic scattering problem in inhomogeneous anisotropic media [J].
Cakoni, F ;
Colton, D .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2003, 46 :293-314
[9]   Scattering theory derivation of a 3D acoustic cloaking shell [J].
Cummer, Steven A. ;
Popa, Bogdan-Ioan ;
Schurig, David ;
Smith, David R. ;
Pendry, John ;
Rahm, Marco ;
Starr, Anthony .
PHYSICAL REVIEW LETTERS, 2008, 100 (02)
[10]  
Dolin LS., 1961, IZV VUZ KHIM KH TEKH, V4, P964