On Differential Inequalities with Point Singularities on the Boundary

被引:5
作者
Galakhov, E. I. [1 ]
机构
[1] Russian Acad Sci, VA Steklov Math Inst, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S0081543808010082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the nonexistence of solutions for some nonlinear ordinary differential equations and inequalities, for quasilinear partial differential equations and inequalities in bounded domains with singular points on the boundary, and for systems of such equations and inequalities. The proofs are based on the method of nonlinear capacity. We also give examples demonstrating that the conditions obtained are sharp in the class of problems under consideration.
引用
收藏
页码:112 / 122
页数:11
相关论文
共 11 条
[1]   Liouville theorems for elliptic inequalities and applications [J].
Birindelli, I ;
Mitidieri, E .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 :1217-1247
[2]  
Brezis H, 1998, B UNIONE MAT ITAL, V1B, P223
[3]  
DEMYANOV AV, 2007, J MATH SCI, V143, P2857, DOI 10.1007/s10958-007-0
[4]  
Hay J, 2003, DOKL MATH, V67, P66
[5]   On necessary conditions for the existence of local, solutions to singular nonlinear ordinary differential equations and inequalities [J].
Hay, J .
MATHEMATICAL NOTES, 2002, 72 (5-6) :847-857
[6]  
Kiguradze I.T., 1993, ASYMPTOTIC PROPERTIE, DOI DOI 10.1007/978-94-011-1808-8
[7]  
Mitidieri E, 1998, DOKL AKAD NAUK+, V359, P456
[8]  
Mitidieri E., 1999, P STEKLOV I MATH, V227, P186
[9]  
MlTIDIERI E., 2001, P STEKLOV I MATH, V234
[10]  
Pohozaev S. I., 1999, DOKL MATH, V59, P351