A Bad Data Identification Method for Multiple Spatio-temporal Data in Power Distribution Network

被引:0
|
作者
Hu, Lijuan [1 ]
Sheng, Wanxing [1 ]
Liu, Keyan [1 ]
Lin, Zhi [2 ]
机构
[1] China Elect Power Res Inst, Guangzhou, Guangdong, Peoples R China
[2] North China Elect Power Univ, Guangzhou, Guangdong, Peoples R China
来源
2018 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON) | 2018年
关键词
Distribution network; Spatio-temporal Data; Bad Data Identification; Hadoop parallelization;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Due to the excessive number of databases, unbalanced development and behindhand sensing infrastructures, distributed network data suffers from inconsistency, data missing, large measurement error and other data quality problems, which hinder the development of smart distribution network. In order to discover more complex deep-seated rules and provide more effective decision support for power system decision-making, it is necessary to study data mining and analysis methods that are suitable for massive data under current situation. This paper studies on the method of identifying bad data for multi-temporal and multi-spatial data in distribution networks and propose a method to identify bad data using likelihood-ratio test for 3D spatio-temporal data. In order to speed up the data processing rate, a 3D-LRT method based on multi-threading and Hadoop parallelization methods is proposed.
引用
收藏
页码:4083 / 4088
页数:6
相关论文
共 50 条
  • [41] Spatio-Temporal Clustering of Traffic Data with Deep Embedded Clustering
    Asadi, Reza
    Regan, Amelia
    PREDICTGIS 2019: PROCEEDINGS OF THE 3RD ACM SIGSPATIAL INTERNATIONAL WORKSHOP ON PREDICTION OF HUMAN MOBILITY (PREDICTGIS 2019), 2019, : 45 - 52
  • [42] Spatio-temporal modeling of global ozone data using convolution
    Li, Yang
    Zhu, Zhengyuan
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2020, 3 (01) : 153 - 166
  • [43] Poster: Sustainable Data Management Flow for Spatio-Temporal Datasets
    Nagata, Yoshiteru
    Kohama, Daiki
    Watanabe, Yoshiki
    Katayama, Shin
    Urano, Kenta
    Yonezawa, Takuro
    Kawaguchi, Nobuo
    PROCEEDINGS OF THE 2024 THE 22ND ANNUAL INTERNATIONAL CONFERENCE ON MOBILE SYSTEMS, APPLICATIONS AND SERVICES, MOBISYS 2024, 2024, : 688 - 689
  • [44] Privacy-Preserving Spatio-Temporal Patient Data Publishing
    Olawoyin, Anifat M.
    Leung, Carson K.
    Choudhury, Ratna
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2020, PT II, 2020, 12392 : 407 - 416
  • [45] Nonlinear PCA for Spatio-Temporal Analysis of Earth Observation Data
    Bueso, Diego
    Piles, Maria
    Camps-Valls, Gustau
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (08): : 5752 - 5763
  • [46] Shifted Maps: Revealing spatio-temporal topologies in movement data
    Otten, Heike
    Hildebrand, Lennart
    Nagel, Till
    Doerk, Marian
    Mueller, Boris
    PROCEEDINGS OF THE IEEE VIS ARTS PROGRAM (VISAP) 2018, 2018,
  • [47] DNN-Based Prediction Model for Spatio-Temporal Data
    Zhang, Junbo
    Zheng, Yu
    Qi, Dekang
    Li, Ruiyuan
    Yi, Xiuwen
    24TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2016), 2016,
  • [48] Efficient representation of spatio-temporal data using cylindrical shearlets
    Bubba, Tatiana A.
    Easley, Glenn
    Heikkila, Tommi
    Labate, Demetrio
    Ayllon, Jose P. Rodriguez
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 429
  • [49] To Approach Cylindrical Coordinates to Represent Multivariable Spatio-temporal Data
    Phuoc Vinh Tran
    COMPUTATIONAL COLLECTIVE INTELLIGENCE - TECHNOLOGIES AND APPLICATIONS, PT II, 2012, 7654 : 21 - 28
  • [50] A New Study of Representation of Spatio-temporal Data with Information Granules
    Song, Mingli
    Shang, Wenqian
    Pedrycz, Witold
    KNOWLEDGE ENGINEERING AND MANAGEMENT , ISKE 2013, 2014, 278 : 319 - 324