A Bad Data Identification Method for Multiple Spatio-temporal Data in Power Distribution Network

被引:0
|
作者
Hu, Lijuan [1 ]
Sheng, Wanxing [1 ]
Liu, Keyan [1 ]
Lin, Zhi [2 ]
机构
[1] China Elect Power Res Inst, Guangzhou, Guangdong, Peoples R China
[2] North China Elect Power Univ, Guangzhou, Guangdong, Peoples R China
来源
2018 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON) | 2018年
关键词
Distribution network; Spatio-temporal Data; Bad Data Identification; Hadoop parallelization;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Due to the excessive number of databases, unbalanced development and behindhand sensing infrastructures, distributed network data suffers from inconsistency, data missing, large measurement error and other data quality problems, which hinder the development of smart distribution network. In order to discover more complex deep-seated rules and provide more effective decision support for power system decision-making, it is necessary to study data mining and analysis methods that are suitable for massive data under current situation. This paper studies on the method of identifying bad data for multi-temporal and multi-spatial data in distribution networks and propose a method to identify bad data using likelihood-ratio test for 3D spatio-temporal data. In order to speed up the data processing rate, a 3D-LRT method based on multi-threading and Hadoop parallelization methods is proposed.
引用
收藏
页码:4083 / 4088
页数:6
相关论文
共 50 条
  • [31] Low Complexity Sensing for Big Spatio-Temporal Data
    Lee, Dongeun
    Choi, Jaesik
    2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014, : 323 - 328
  • [32] Spatio-Temporal Data Mining: A Survey of Problems and Methods
    Atluri, Gowtham
    Karpatne, Anuj
    Kumar, Vipin
    ACM COMPUTING SURVEYS, 2018, 51 (04)
  • [33] MODELING AND VISUALIZATION OF SPACE OBJECTS SPATIO-TEMPORAL DATA
    Xu Qing
    Zhou Yang
    Zhang Baoming
    Lan ChaoZhen
    4TH ISPRS INTERNATIONAL WORKSHOP 3D-ARCH 2011: 3D VIRTUAL RECONSTRUCTION AND VISUALIZATION OF COMPLEX ARCHITECTURES, 2011, 38-5 (W16): : 155 - 162
  • [34] A programming model for spatio-temporal data streaming applications
    Imai, Shigeru
    Varela, Carlos A.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2012, 2012, 9 : 1139 - 1148
  • [35] A time-based integration method of spatio-temporal data at spatial database level
    Fan, Y. T.
    Yang, J. Y.
    Zhu, D. H.
    Wei, K. L.
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 51 (11-12) : 1286 - 1292
  • [36] A Spatio-Temporal Data-Driven Automatic Control Method for Smart Home Services
    Chen, Jinrong
    Chen, Zheyi
    Zheng, Longhai
    Chen, Xing
    COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2022, WWW 2022 COMPANION, 2022, : 948 - 955
  • [37] Estimation of multiple sources using spatio-temporal data on a three-dimensional measurement of MEG
    Kobayashi, K
    Uchikawa, Y
    IEEE TRANSACTIONS ON MAGNETICS, 2001, 37 (04) : 2915 - 2917
  • [38] Application of Mixtures of Gaussians for Tracking Clusters in Spatio-temporal Data
    Ertl, Benjamin
    Meyer, Joerg
    Streit, Achim
    Schneider, Matthias
    KDIR: PROCEEDINGS OF THE 11TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT - VOL 1: KDIR, 2019, : 45 - 54
  • [39] Spatio-Temporal Pattern and Trend Extraction on Turkish Meteorological Data
    Goler, Isil
    Senkul, Pinar
    Yazici, Adnan
    COMPUTER AND INFORMATION SCIENCES II, 2012, : 505 - 510
  • [40] Spatio-temporal modeling of global ozone data using convolution
    Yang Li
    Zhengyuan Zhu
    Japanese Journal of Statistics and Data Science, 2020, 3 : 153 - 166