A Bad Data Identification Method for Multiple Spatio-temporal Data in Power Distribution Network

被引:0
|
作者
Hu, Lijuan [1 ]
Sheng, Wanxing [1 ]
Liu, Keyan [1 ]
Lin, Zhi [2 ]
机构
[1] China Elect Power Res Inst, Guangzhou, Guangdong, Peoples R China
[2] North China Elect Power Univ, Guangzhou, Guangdong, Peoples R China
来源
2018 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON) | 2018年
关键词
Distribution network; Spatio-temporal Data; Bad Data Identification; Hadoop parallelization;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Due to the excessive number of databases, unbalanced development and behindhand sensing infrastructures, distributed network data suffers from inconsistency, data missing, large measurement error and other data quality problems, which hinder the development of smart distribution network. In order to discover more complex deep-seated rules and provide more effective decision support for power system decision-making, it is necessary to study data mining and analysis methods that are suitable for massive data under current situation. This paper studies on the method of identifying bad data for multi-temporal and multi-spatial data in distribution networks and propose a method to identify bad data using likelihood-ratio test for 3D spatio-temporal data. In order to speed up the data processing rate, a 3D-LRT method based on multi-threading and Hadoop parallelization methods is proposed.
引用
收藏
页码:4083 / 4088
页数:6
相关论文
共 50 条
  • [21] An Efficient Method for Collecting Spatio-Temporal Data in the WSN Using Mobile Sinks
    Materukhin, Andrey
    Shakhov, Vladimir
    Sokolova, Olga
    2017 INTERNATIONAL MULTI-CONFERENCE ON ENGINEERING, COMPUTER AND INFORMATION SCIENCES (SIBIRCON), 2017, : 118 - 120
  • [22] Multi-Source Spatio-Temporal Data Fusion Path Estimation Method
    Hu, Qinying
    Sun, Gege
    Chen, Hang
    ELECTRONICS, 2025, 14 (04):
  • [23] Mining Spatio-Temporal Data at Different Levels of Detail
    Camossi, Elena
    Bertolotto, Michela
    Kechadi, Tahar
    EUROPEAN INFORMATION SOCIETY: TAKING GEOINFORMATION SCIENCE ONE STEP FURTHER, 2009, : 225 - 240
  • [24] A Density-Based Clustering of Spatio-Temporal Data
    Zaghlool, Ehab
    ElKaffas, Saleh
    Saad, Amani
    NEW CONTRIBUTIONS IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 2, 2015, 354 : 41 - 50
  • [25] Beast: Scalable Exploratory Analytics on Spatio-temporal Data
    Eldawy, Ahmed
    Hristidis, Vagelis
    Ghosh, Saheli
    Saeedan, Majid
    Sevim, Akil
    Siddique, A. B.
    Singla, Samriddhi
    Sivaram, Ganesh
    Vu, Tin
    Zhang, Yaming
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3796 - 3807
  • [26] Visual Exploration of Big Spatio-Temporal Movement Data
    Xu, Jie
    Wang, Wuquan
    Li, Jie
    Zhang, Kang
    PROCEEDINGS OF 2015 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATCS AND COMPUTING (IEEE PIC), 2015, : 363 - 368
  • [27] Generative Adversarial Networks for Spatio-temporal Data: A Survey
    Gao, Nan
    Xue, Hao
    Shao, Wei
    Zhao, Sichen
    Qin, Kyle Kai
    Prabowo, Arian
    Rahaman, Mohammad Saiedur
    Salim, Flora D.
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (02)
  • [28] An Enhanced Imputation Approach for Spatio-Temporal Clinical Data
    Yin, Yilin
    Chou, Chun-An
    2022 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2022, : 813 - 818
  • [29] Deep Learning for Spatio-Temporal Data Mining: A Survey
    Wang, Senzhang
    Cao, Jiannong
    Yu, Philip S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (08) : 3681 - 3700
  • [30] Preservation of implicit privacy in spatio-temporal data publication
    Wang L.
    Meng X.-F.
    Guo S.-N.
    Meng, Xiao-Feng (xfmeng@ruc.edu.cn), 1922, Chinese Academy of Sciences (27): : 1922 - 1933