Evaluation of Tris-Bipyridine Chromium Complexes for Flow Battery Applications: Impact of Bipyridine Ligand Structure on Solubility and Electrochemistry

被引:56
作者
Cabrera, Pablo J. [1 ,3 ]
Yang, Xingyi [2 ,3 ]
Suttil, James A. [1 ,3 ]
Brooner, Rachel E. M. [1 ,3 ]
Thompson, Levi T. [2 ,3 ]
Sanford, Melanie S. [1 ,3 ]
机构
[1] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[3] Joint Ctr Energy Storage Res, Argonne, IL USA
关键词
ELECTRICAL ENERGY-STORAGE; RENEWABLE ENERGY; REDOX; ELECTROLYTES; OXIDATION; HEXAFLUOROPHOSPHATE; CATHOLYTE; RUTHENIUM; PROGRESS; METALS;
D O I
10.1021/acs.inorgchem.5b01328
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
This report describes the design, synthesis, solubility, and electrochemistry of a series of tris-bipyridine chromium complexes that exhibit up to six reversible redox couples as well as solubilities approaching 1 M in acetonitrile. We have systematically modified both the ligand structure and the oxidation state of these complexes to gain insights into the factors that impact solubility and electrochemistry. The results provide a set of structure-solubility-electrochemistry relationships to guide the future development of electrolytes for nonaqueous flow batteries. In addition, we have identified a promising candidate from the series of chromium complexes for further electrochemical and battery assessment.
引用
收藏
页码:10214 / 10223
页数:10
相关论文
共 79 条
[1]   Redox flow batteries for the storage of renewable energy: A review [J].
Alotto, Piergiorgio ;
Guarnieri, Massimo ;
Moro, Federico .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 29 :325-335
[2]  
Anderson T. M., 2014, [No title captured], Patent No. [US 20140239906A1, 20140239906]
[3]  
Anslyn E. V., 2005, MODERN PHYS ORGANIC, P153
[4]   ELECTROCHEMICAL REDUCTION OF POLYTETRAFLUOROETHYLENE [J].
BARKER, DJ ;
BREWIS, DM ;
DAHM, RH ;
HOY, LRJ .
ELECTROCHIMICA ACTA, 1978, 23 (10) :1107-1110
[5]   ZUR KENNTNIS DER REAKTIONSWEISEN DER CYANOMETALLATE(0) K6[CR(CN)6] UND K4[NI(CN)4] [J].
BEHRENS, H ;
MULLER, A .
ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1965, 341 (3-4) :124-&
[6]   An All-Organic Non-aqueous Lithium-Ion Redox Flow Battery [J].
Brushett, Fikile R. ;
Vaughey, John T. ;
Jansen, Andrew N. .
ADVANCED ENERGY MATERIALS, 2012, 2 (11) :1390-1396
[7]   Complexes Containing Redox Noninnocent Ligands for Symmetric, Multielectron Transfer Nonaqueous Redox Flow Batteries [J].
Cabrera, Pablo J. ;
Yang, Xingyi ;
Sutti, James A. ;
Hawthorne, Krista L. ;
Brooner, Rachel E. M. ;
Sanford, Melanie S. ;
Thompson, Levi T. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (28) :15882-15889
[8]   Application of Redox Non-Innocent Ligands to Non-Aqueous Flow Battery Electrolytes [J].
Cappillino, Patrick J. ;
Pratt, Harry D., III ;
Hudak, Nicholas S. ;
Tomson, Neil C. ;
Anderson, Travis M. ;
Anstey, Mitchell R. .
ADVANCED ENERGY MATERIALS, 2014, 4 (01)
[9]  
Carey F. A., 1991, ADV ORGANIC CHEM A, P197
[10]   Evaluation of electrolytes for redox flow battery applications [J].
Chakrabarti, M. H. ;
Dryfe, R. A. W. ;
Roberts, E. P. L. .
ELECTROCHIMICA ACTA, 2007, 52 (05) :2189-2195