On singularities of third secant varieties of Veronese embeddings

被引:5
作者
Han, Kangjin [1 ]
机构
[1] DGIST, Sch Undergrad Studies, 333 Techno Jungang Daero,Hyeonpung Myeon, Daegu 42988, South Korea
基金
新加坡国家研究基金会;
关键词
Singularity; Secant variety; Veronese embedding; Segre embedding;
D O I
10.1016/j.laa.2018.01.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study singularities of third secant varieties of Veronese embedding v(d)(P-n), which corresponds to the variety of symmetric tensors of border rank at most three in (Cn+1)(circle times d). (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:391 / 406
页数:16
相关论文
共 13 条
[1]  
Abo H, 2012, J ALGEBRAIC GEOM, V21, P1
[2]   JOINS AND HIGHER SECANT VARIETIES [J].
ADLANDSVIK, B .
MATHEMATICA SCANDINAVICA, 1987, 61 (02) :213-222
[3]  
Alexander J., 1995, J ALGEBRAIC GEOM, V4, P201
[4]   Reducing the number of variables of a polynomial [J].
Carlini, Enrico .
ALGEBRAIC GEOMETRY AND GEOMETRIC MODELING, 2006, :237-247
[5]   AN ALGORITHM FOR GENERIC AND LOW-RANK SPECIFIC IDENTIFIABILITY OF COMPLEX TENSORS [J].
Chiantini, Luca ;
Ottaviani, Giorgio ;
Vannieuwenhoven, Nick .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2014, 35 (04) :1265-1287
[6]   On the Rank of a Binary Form [J].
Comas, Gonzalo ;
Seiguer, Malena .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2011, 11 (01) :65-78
[7]  
Grayson Daniel R., Macaulay 2, a software system for research in algebraic geometry
[8]  
Iarrobino A., 1999, Power sums, Gorenstein algebras, and determinantal loci, volume 1721 of Lecture Notes in Mathematics, V1721
[9]  
Kanev V., 1999, J. Math. Sci, V94, P1114, DOI [10.1007/BF02367252, DOI 10.1007/BF02367252]
[10]   Equations for secant varieties of Veronese and other varieties [J].
Landsberg, J. M. ;
Ottaviani, Giorgio .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2013, 192 (04) :569-606