Hermite-Hadamard type inequalities for interval-valued fractional integrals with respect to another function

被引:6
作者
Tunc, Tuba [1 ]
机构
[1] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkey
关键词
Fractional integrals; Hermite-Hadamard inequality; interval-valued functions; CALCULUS;
D O I
10.1515/ms-2022-0102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, first we define interval-valued left-sided and right-sided fractional integrals of a function with respect to the another function. Then, we handle Hermite-Hadamard type inequalities via these definitions.
引用
收藏
页码:1501 / 1512
页数:12
相关论文
共 50 条
  • [41] Hermite-Hadamard's mid-point type inequalities for generalized fractional integrals
    Delavar, M. Rostamian
    Dragomir, S. S.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (02)
  • [42] Hermite-Hadamard’s mid-point type inequalities for generalized fractional integrals
    M. Rostamian Delavar
    S. S. Dragomir
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [43] On the Weighted Generalization of Hermite-Hadamard Type Inclusions for Interval-Valued Convex Functions
    Budak, Huseyin
    Kara, Hasan
    [J]. FILOMAT, 2022, 36 (14) : 4779 - 4791
  • [44] Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals
    Iscan, Imdat
    Wu, Shanhe
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 : 237 - 244
  • [45] Symmetrical Hermite-Hadamard type inequalities stemming from multiplicative fractional integrals
    Peng, Yu
    Ozcan, Serap
    Du, Tingsong
    [J]. CHAOS SOLITONS & FRACTALS, 2024, 183
  • [46] New generalization of Hermite-Hadamard type inequalities via generalized fractional integrals
    Budak, Huseyin
    Ertugral, Fatma
    Sarikaya, Mehmet Zeki
    [J]. ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2020, 47 (02): : 369 - 386
  • [47] Hermite-Hadamard type inequalities for multiplicative Riemann-Liouville fractional integrals
    Du, Tingsong
    Peng, Yu
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 440
  • [48] Hermite-Hadamard type inequalities based on the Erdelyi-Kober fractional integrals
    Hai, XuRan
    Wang, ShuHong
    [J]. AIMS MATHEMATICS, 2021, 6 (10): : 11494 - 11507
  • [49] On Some New Extensions of Inequalities of Hermite-Hadamard Type for Generalized Fractional Integrals
    Budak, Huseyin
    Bilisik, Candan Can
    Sarikaya, Mehmet Zeki
    [J]. SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2022, 19 (02): : 65 - 79
  • [50] Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals
    Ali, Muhammad Aamir
    Korus, Peter
    Valdes, Juan E. Napoles
    [J]. MATHEMATICA SLOVACA, 2024, 74 (05) : 1173 - 1180