Contact Geometry in Optimal Control of Thermodynamic Processes for Gases

被引:0
作者
Kushner, A. G. [1 ,2 ]
Lychagin, V. V. [3 ]
Roop, M. D. [1 ,3 ]
机构
[1] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia
[2] Moscow State Pedag Univ, Moscow 119435, Russia
[3] Russian Acad Sci, Trapeznikov Inst Control Sci, Moscow 117997, Russia
基金
俄罗斯基础研究基金会;
关键词
contact geometry; thermodynamics; optimal control; Hamiltonian systems; integrability;
D O I
10.1134/S1064562420040109
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We solve an optimal control problem for thermodynamic processes in an ideal gas. The thermodynamic state is given by a Legendrian manifold in a contact space. Pontryagin's maximum principle is used to find an optimal trajectory (thermodynamic process) on this manifold that maximizes the work of the gas. In the case of ideal gases, it is shown that the corresponding Hamiltonian system is completely integrable and its quadrature-based solution is given. Keywords :contact geometry, thermodynamics, optimal control, Hamiltonian systems, integrability
引用
收藏
页码:346 / 349
页数:4
相关论文
共 50 条
  • [31] Optimal Control with Sweeping Processes: Numerical Method
    MdR de Pinho
    M. M. A. Ferreira
    G. Smirnov
    Journal of Optimization Theory and Applications, 2020, 185 : 845 - 858
  • [32] Optimal boundary control of a contact thawing process for foodstuff
    Backi, Christoph Josef
    Leth, John
    Gravdahl, Jan Tommy
    IFAC PAPERSONLINE, 2016, 49 (07): : 183 - 188
  • [33] Optimal control of a frictionless contact problem with normal compliance
    Touzaline, Arezki
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2018, 59 (03): : 327 - 342
  • [34] Boundary optimal control of a nonsmooth frictionless contact problem
    Sofonea, Mircea
    Xiao, Yi-bin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (01) : 152 - 165
  • [35] Optimal control of static contact in finite strain elasticity
    Schiela, Anton
    Stoecklein, Matthias
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
  • [36] Boundary optimal control of a dynamic frictional contact problem
    Peng, Zijia
    Gamorski, Piotr
    Migorski, Stanislaw
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2020, 100 (10):
  • [37] Optimal control of a two-dimensional contact problem
    Sofonea, Mircea
    Benraouda, Ahlem
    Hechaichi, Hadjer
    APPLICABLE ANALYSIS, 2018, 97 (08) : 1281 - 1298
  • [38] Optimal Control, Contact Dynamics and Herglotz Variational Problem
    de Leon, Manuel
    Lainz, Manuel
    Munoz-Lecanda, Miguel C.
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (01)
  • [39] Optimal control of friction coefficient in Signorini contact problems
    Essoufi, El-Hassan
    Zafrar, Abderrahim
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2021, 42 (06) : 1794 - 1811
  • [40] Optimal control of a frictional contact problem with unilateral constraints
    Guettaf, Rachid
    Touzaline, Arezki
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2024, 69 (04): : 913 - 925