Third-order convergence theorem by using majorizing function for a modified Newton method in Banach space

被引:38
作者
Wu, Qingbiao [1 ]
Zhao, Yueqing
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310028, Zhejiang, Peoples R China
[2] Taizhou Univ, Dept Math, Linhai 317000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Newton-Kantorovich theorem; Banach space; nonlinear operator equation; modified Newton method; majorizing function;
D O I
10.1016/j.amc.2005.08.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Following the ideas of Frontini and Sormani, we present a modified Newton method in Banach space which is used to solve the nonlinear operator equation. We establish the Newton-Kantorovich convergence theorem for the modified Newton method with third-order convergence in Banach space by using majorizing function. We also get the error estimate. Finally, two examples are provided to show the application of our theorem. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:1515 / 1524
页数:10
相关论文
共 19 条
[1]   A fast Chebyshev's method for quadratic equations [J].
Amat, S ;
Busquier, S ;
El Kebir, D ;
Molina, J .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 148 (02) :461-474
[2]  
Argyros I., 1993, PROYECCIONES, V12, P119, DOI [10.22199/S07160917.1993.0002.00002, DOI 10.22199/S07160917.1993.0002.00002]
[3]   On Newton's method under mild differentiability conditions and applications [J].
Argyros, IK .
APPLIED MATHEMATICS AND COMPUTATION, 1999, 102 (2-3) :177-183
[4]   On the comparison of a weak variant of the Newton-Kantorovich and Miranda theorems [J].
Argyros, IK .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 166 (02) :585-589
[5]   An improved error analysis for Newton-like methods under generalized conditions [J].
Argyros, IK .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 157 (01) :169-185
[6]   On a theorem of L.V. Kantorovich concerning Newton's method [J].
Argyros, IK .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 155 (02) :223-230
[7]   On the Newton-Kantorovich hypothesis for solving equations [J].
Argyros, LK .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 169 (02) :315-332
[8]   Third-order methods from quadrature formulae for solving systems of nonlinear equations [J].
Frontini, A ;
Sormani, E .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 149 (03) :771-782
[9]   Modified Newton's method with third-order convergence and multiple roots [J].
Frontini, M ;
Sormani, E .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 156 (02) :345-354
[10]   Some variant of Newton's method with third-order convergence [J].
Frontini, M ;
Sormani, E .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 140 (2-3) :419-426