Interfacial strain-promoted alkyne-azide cycloaddition (I-SPAAC) for the synthesis of nanomaterial hybrids

被引:46
|
作者
Gobbo, Pierangelo [1 ,2 ]
Novoa, Samantha [1 ,2 ]
Biesinger, Mark C. [3 ]
Workentin, Mark S. [1 ,2 ]
机构
[1] Univ Western Ontario, Dept Chem, London, ON N6A 5B7, Canada
[2] Univ Western Ontario, Ctr Adv Mat & Biomat, London, ON N6A 5B7, Canada
[3] Univ Western Ontario, Surface Sci Western, London, ON N6G 0J3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
FREE CLICK CHEMISTRY; COPPER; VIVO; FUNCTIONALIZATION;
D O I
10.1039/c3cc41634h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An interfacial strain promoted azide-alkyne cycloaddition (I-SPACC) is introduced as a method to prepare robust nanomaterial hybrids. This is demonstrated with a reaction between a novel dibenzo-cyclooctyne-modified single walled carbon nanotubes (DBCO-SWCNT) and a versatile water-soluble azide modified gold nanoparticle (N-3-EG(4)-AuNP).
引用
收藏
页码:3982 / 3984
页数:3
相关论文
共 50 条
  • [21] Injectable biocompatible poly(2-oxazoline) hydrogels by strain promoted alkyne-azide cycloaddition
    Park, Jong-Ryul
    Bolle, Eleonore C. L.
    Cavalcanti, Amanda Dos Santos
    Podevyn, Annelore
    Van Guyse, Joachim F. R.
    Forget, Aurelien
    Hoogenboom, Richard
    Dargaville, Tim R.
    BIOINTERPHASES, 2021, 16 (01)
  • [22] Live-Cell Imaging of Cellular Proteins by a Strain-Promoted Azide-Alkyne Cycloaddition
    Beatty, Kimberly E.
    Fisk, John D.
    Smart, Brian P.
    Lu, Ying Ying
    Szychowski, Janek
    Hangauer, Matthew J.
    Baskin, Jeremy M.
    Bertozzi, Carolyn R.
    Tirrell, David A.
    CHEMBIOCHEM, 2010, 11 (15) : 2092 - 2095
  • [23] Electronic Effects versus Distortion Energies During Strain-Promoted Alkyne-Azide Cycloadditions: A Theoretical Tool to Predict Reaction Kinetics
    Garcia-Hartjes, Jaime
    Dommerholt, Jan
    Wennekes, Tom
    van Delft, Floris L.
    Zuilhof, Han
    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 2013, 2013 (18) : 3712 - 3720
  • [24] Peptide-decorated gold nanoparticles via strain-promoted azide-alkyne cycloaddition and post assembly deprotection
    Wang, Xiaoxiao
    Gobbo, Pierangelo
    Suchy, Mojmir
    Workentin, Mark S.
    Hudson, Robert H. E.
    RSC ADVANCES, 2014, 4 (81): : 43087 - 43091
  • [25] Fast copper-free click DNA ligation by the ring-strain promoted alkyne-azide cycloaddition reaction
    Shelbourne, Montserrat
    Chen, Xiong
    Brown, Tom
    El-Sagheer, Afaf H.
    CHEMICAL COMMUNICATIONS, 2011, 47 (22) : 6257 - 6259
  • [26] Plasma induced acceleration and selectivity in strain-promoted azide-alkyne cycloadditions
    Warther, David
    Dursun, Enes
    Recher, Marion
    Ursuegui, Sylvain
    Mosser, Michel
    Sobska, Joanna
    Krezel, Wojciech
    Chaubet, Guilhem
    Wagner, Alain
    ORGANIC & BIOMOLECULAR CHEMISTRY, 2021, 19 (23) : 5063 - 5067
  • [27] Catalytic Asymmetric Huisgen Alkyne-Azide Cycloaddition of Bisalkynes by Copper(I) Nanoparticles
    Chen, Mu-Yi
    Xu, Zheng
    Chen, Li
    Song, Tao
    Zheng, Zhan-Jiang
    Cao, Jian
    Cui, Yu-Ming
    Xu, Li-Wen
    CHEMCATCHEM, 2018, 10 (01) : 280 - 286
  • [28] Traceless Tosylhydrazone-Based Triazole Formation: A Metal-Free Alternative to Strain-Promoted Azide-Alkyne Cycloaddition
    van Berkel, Sander S.
    Brauch, Sebastian
    Gabriel, Lars
    Henze, Michael
    Stark, Sebastian
    Vasilev, Dimitar
    Wessjohann, Ludger A.
    Abbas, Muhammad
    Westermann, Bernhard
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (22) : 5343 - 5346
  • [29] Covalent immobilisation of magnetic nanoparticles on surfaces via strain-promoted azide-alkyne click chemistry
    Fratila, Raluca M.
    Navascuez, Marcos
    Idiago-Lopez, Javier
    Eceiza, Maite
    Miranda, Jose I.
    Aizpurua, Jesus M.
    de la Fuente, Jesus M.
    NEW JOURNAL OF CHEMISTRY, 2017, 41 (19) : 10835 - 10840
  • [30] Investigation of Strain-Promoted Azide-Alkyne Cycloadditions in Aqueous Solutions by Capillary Electrophoresis
    Steflova, Jana
    Storch, Golo
    Wiesner, Sarah
    Stockinger, Skrollan
    Berg, Regina
    Trapp, Oliver
    JOURNAL OF ORGANIC CHEMISTRY, 2018, 83 (02): : 604 - 613