Diffusion-Controlled Porous Crystalline Silicon Lithium Metal Batteries

被引:4
作者
Collins, John [1 ]
de Souza, Joel P. [1 ]
Hopstaken, Marinus [1 ]
Ott, John A. [1 ]
Bedell, Stephen W. [1 ]
Sadana, Devendra K. [1 ]
机构
[1] IBM TJ Watson Res Ctr, 1101 Kitchawan Rd,Rt 134, Yorktown Hts, NY 10598 USA
关键词
MICROPARTICLE ANODES; ACTIVATED CARBON; LAYER; SURFACE; PERFORMANCE; STRESS; COMPOSITES; ELECTRODE; STRAIN; SI;
D O I
10.1016/j.isci.2020.101586
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nanostructured porous silicon materials have recently advanced as hosts for Li-metal plating. However, limitations involve detrimental silicon self-pulverization, Li-dendrites, and the ability to achieve wafer-level integration of non-composite, pure silicon anodes. compo. Herein, full cells featuring low-resistance, wafer-scale porous crystalline silicon (PCS) anodes are embedded with a nanoporous Li-plating and diffusion-regulating surface layer upon combined wafer surface cleaning (SC) and anodization. LL Lithiophilic surface formation is illustrated via correlation of surface groups and X-ray structure. Low-cost SC-PCS anodes require no composite formulation, and pre-lithiation enables sustainable Li-metal plating/stripping on the lithiophilic surface and in SC-PCS bulk nanostructure. Anodization time and C-rate determined competitive full cell performance: NMC811 | 4800 s SC-PCS: 195 mAh/g (99.9% coulombic efficiency [C.E.], C/3, 50 cycles), 165 mAh/g, 587 Wh/kg (97.1% C.E., C/3 and C/2 rate, 350 cycles), 24 Omega*cm(2) SC-PCS-resistivity (900 cycles); 160 mu m LCO | 500 s SC-PCS: 102 mAh/g (94.1% C.E., 1C, 350 cycles).
引用
收藏
页数:28
相关论文
共 73 条
  • [1] Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes
    An, Weili
    Gao, Biao
    Mei, Shixiong
    Xiang, Ben
    Fu, Jijiang
    Wang, Lei
    Zhang, Qiaobao
    Chu, Paul K.
    Huo, Kaifu
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [2] X-ray reflectometry characterization of porous silicon films prepared by a glancing-angle deposition method
    Asgharizadeh, S.
    Sutton, M.
    Robbie, K.
    Brown, T.
    [J]. PHYSICAL REVIEW B, 2009, 79 (12):
  • [3] High-Toughness Inorganic Solid Electrolytes via the Use of Reduced Graphene Oxide
    Athanasiou, Christos E.
    Jin, Mok Yun
    Ramirez, Cristina
    Padture, Nitin P.
    Sheldon, Brian W.
    [J]. MATTER, 2020, 3 (01) : 212 - 229
  • [4] High toughness carbon-nanotube-reinforced ceramics via ion-beam engineering of interfaces
    Athanasiou, Christos E.
    Zhang, Hongliang
    Ramirez, Cristina
    Xi, Jianqi
    Baba, Tomonori
    Wang, Xing
    Zhang, Wei
    Padture, Nitin P.
    Szlufarska, Izabela
    Sheldon, Brian W.
    [J]. CARBON, 2020, 163 : 169 - 177
  • [5] X-ray-diffraction investigation of the anodic oxidation of porous silicon
    Buttard, D
    Bellet, D
    Dolino, G
    [J]. JOURNAL OF APPLIED PHYSICS, 1996, 79 (10) : 8060 - 8070
  • [6] Porous silicon strain during in situ ultrahigh vacuum thermal annealing
    Buttard, D
    Dolino, G
    Faivre, C
    Halimaoui, A
    Comin, F
    Formoso, V
    Ortega, L
    [J]. JOURNAL OF APPLIED PHYSICS, 1999, 85 (10) : 7105 - 7111
  • [7] Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries
    Chae, Sujong
    Choi, Seong-Hyeon
    Kim, Namhyung
    Sung, Jaekyung
    Cho, Jaephil
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (01) : 110 - 135
  • [8] Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries
    Chen, Ji
    Fan, Xiulin
    Li, Qin
    Yang, Hongbin
    Khoshi, M. Reza
    Xu, Yaobin
    Hwang, Sooyeon
    Chen, Long
    Ji, Xiao
    Yang, Chongyin
    He, Huixin
    Wang, Chongmin
    Garfunkel, Eric
    Su, Dong
    Borodin, Oleg
    Wang, Chunsheng
    [J]. NATURE ENERGY, 2020, 5 (05) : 386 - 397
  • [9] High-Energy Li Metal Battery with Lithiated Host
    Chen, Long
    Fan, Xiulin
    Ji, Xiao
    Chen, Ji
    Hou, Singyuk
    Wang, Chunsheng
    [J]. JOULE, 2019, 3 (03) : 732 - 744
  • [10] Collins J., 2020, Patent No. 20200212491