Alternative characterization of hyperbolic affine infinite iterated function systems

被引:17
作者
Miculescu, Radu [1 ]
Mihail, Alexandru [1 ]
机构
[1] Univ Bucharest, Fac Math & Comp Sci, Bucharest 010014, Romania
关键词
Affine infinite iterated function system; Comparison function; Attractor of an affine infinite iterated function system; phi-hyperbolic affine infinite iterated function system; Uniformly point-fibre affine infinite iterated function system; Convex body; Strictly topologically contractive affine infinite iterated function system; SPACE; SETS; IFS;
D O I
10.1016/j.jmaa.2013.05.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a characterization of hyperbolic affine infinite iterated function systems defined on an arbitrary normed space. Our result is a generalization of Theorem 1.1 from the paper "A characterization of hyperbolic affine iterated function systems", Topology Proceedings, 36 (2010), 189-211, by R. Atkins, M. Barnsley, A. Vince and D. Wilson. Some examples are presented. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:56 / 68
页数:13
相关论文
共 50 条
[41]   Overlap Functions for Measures in Conformal Iterated Function Systems [J].
Mihailescu, Eugen ;
Urbanski, Mariusz .
JOURNAL OF STATISTICAL PHYSICS, 2016, 162 (01) :43-62
[42]   Topological pressures of a factor map for iterated function systems [J].
Yang, Zhongxuan ;
Huang, Xiaojun ;
Zhang, Jiajun .
AIMS MATHEMATICS, 2025, 10 (04) :10124-10139
[43]   Weakly contractive iterated function systems and beyond: a manual [J].
Lesniak, Krzysztof ;
Snigireva, Nina ;
Strobin, Filip .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2020, 26 (08) :1114-1173
[44]   Iterated function systems of logistic maps: synchronization and intermittency [J].
Abbasi, Neda ;
Gharaei, Masoumeh ;
Homburg, Ale Jan .
NONLINEARITY, 2018, 31 (08) :3880-3913
[45]   Hardy-Rogers Type Iterated Function Systems [J].
Georgescu, Flavian ;
Miculescu, Radu ;
Mihail, Alexandru .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (01)
[47]   Zeros of the Selberg zeta function for symmetric infinite area hyperbolic surfaces [J].
Pollicott, Mark ;
Vytnova, Polina .
GEOMETRIAE DEDICATA, 2019, 201 (01) :155-186
[48]   REGULARITY OF MULTIFRACTAL SPECTRA OF CONFORMAL ITERATED FUNCTION SYSTEMS [J].
Jaerisch, Johannes ;
Kesseboehmer, Marc .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (01) :313-330
[49]   Iterated Function Systems and Lojasiewicz-Siciak Condition of Green's Function [J].
Bialas-Ciez, Leokadia ;
Kosek, Marta .
POTENTIAL ANALYSIS, 2011, 34 (03) :207-221
[50]   Separation Conditions for Iterated Function Systems with Overlaps on Riemannian Manifolds [J].
Ngai, Sze-Man ;
Xu, Yangyang .
JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (08)