Alternative characterization of hyperbolic affine infinite iterated function systems

被引:16
作者
Miculescu, Radu [1 ]
Mihail, Alexandru [1 ]
机构
[1] Univ Bucharest, Fac Math & Comp Sci, Bucharest 010014, Romania
关键词
Affine infinite iterated function system; Comparison function; Attractor of an affine infinite iterated function system; phi-hyperbolic affine infinite iterated function system; Uniformly point-fibre affine infinite iterated function system; Convex body; Strictly topologically contractive affine infinite iterated function system; SPACE; SETS; IFS;
D O I
10.1016/j.jmaa.2013.05.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a characterization of hyperbolic affine infinite iterated function systems defined on an arbitrary normed space. Our result is a generalization of Theorem 1.1 from the paper "A characterization of hyperbolic affine iterated function systems", Topology Proceedings, 36 (2010), 189-211, by R. Atkins, M. Barnsley, A. Vince and D. Wilson. Some examples are presented. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:56 / 68
页数:13
相关论文
共 50 条
  • [31] ON ATTRACTORS OF TYPE 1 ITERATED FUNCTION SYSTEMS †
    Mathew, Jose
    Mathew, Sunil
    Secelean, Nicolae Adrian
    [J]. JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2024, 42 (03): : 583 - 605
  • [32] Expansive Measures of Nonautonomous Iterated Function Systems
    Cui, Mengxin
    Selmi, Bilel
    Li, Zhiming
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2025, 24 (02)
  • [33] Reich-type iterated function systems
    Miculescu, Radu
    Mihail, Alexandru
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2016, 18 (02) : 285 - 296
  • [34] A strongly irreducible affine iterated function system with two invariant measures of maximal dimension
    Morris, Ian D.
    Sert, Cagri
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (11) : 3417 - 3438
  • [35] Thermodynamic Formalism for General Iterated Function Systems with Measures
    Brasil, Jader E.
    Oliveira, Elismar R.
    Souza, Rafael Rigao
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (01)
  • [36] ON ITERATED FUNCTION SYSTEMS WITH PLACE-DEPENDENT PROBABILITIES
    Barany, Balazs
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (01) : 419 - 432
  • [37] Generalized Iterated Function Systems with Place Dependent Probabilities
    Miculescu, Radu
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2014, 130 (01) : 135 - 150
  • [38] Intrinsic Diophantine approximation for overlapping iterated function systems
    Baker, Simon
    [J]. MATHEMATISCHE ANNALEN, 2024, 388 (03) : 3259 - 3297
  • [39] Overlap Functions for Measures in Conformal Iterated Function Systems
    Mihailescu, Eugen
    Urbanski, Mariusz
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2016, 162 (01) : 43 - 62
  • [40] Iterated function systems of logistic maps: synchronization and intermittency
    Abbasi, Neda
    Gharaei, Masoumeh
    Homburg, Ale Jan
    [J]. NONLINEARITY, 2018, 31 (08) : 3880 - 3913