Symmetric minimally entangled typical thermal states

被引:12
作者
Bruognolo, Benedikt [1 ]
von Delft, Jan
Weichselbaum, Andreas
机构
[1] Univ Munich, Dept Phys, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
来源
PHYSICAL REVIEW B | 2015年 / 92卷 / 11期
关键词
MATRIX RENORMALIZATION-GROUP; MONTE-CARLO-SIMULATION; SPIN SYSTEMS; CHAIN; FIELD; CU-3(CO3)(2)(OH)(2); ANTIFERROMAGNET; THERMODYNAMICS; AZURITE;
D O I
10.1103/PhysRevB.92.115105
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We extend White's minimally entangled typically thermal states approach (METTS) to allow Abelian and non-Ablian symmetries to be exploited when computing finite-temperature response functions in one-dimensional (1D) quantum systems. Our approach, called SYMETTS, starts from a METTS sample of states that are not symmetry eigenstates, and generates from each a symmetry eigenstate. These symmetry states are then used to calculate dynamic response functions. SYMETTS is ideally suited to determine the low-temperature spectra of 1D quantum systems with high resolution. We employ this method to study a generalized diamond chain model for the natural mineral azurite Cu-3(CO3)(2)(OH)(2), which features a plateau at 1/3 in the magnetization curve at low temperatures. Our calculations provide new insight into the effects of temperature on magnetization and excitation spectra in the plateau phase, which can be fully understood in terms of the microscopic model.
引用
收藏
页数:16
相关论文
共 65 条
[1]   Production of minimally entangled typical thermal states with the Krylov-space approach [J].
Alvarez, G. .
PHYSICAL REVIEW B, 2013, 87 (24)
[2]   Magnetic and quantum entanglement properties of the distorted diamond chain model for azurite [J].
Ananikian, N. ;
Lazaryan, H. ;
Nalbandyan, M. .
EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (07)
[3]  
Barthel T., ARXIV12123570
[4]   Precise evaluation of thermal response functions by optimized density matrix renormalization group schemes [J].
Barthel, Thomas .
NEW JOURNAL OF PHYSICS, 2013, 15
[5]   Spectral functions in one-dimensional quantum systems at finite temperature using the density matrix renormalization group [J].
Barthel, Thomas ;
Schollwoeck, Ulrich ;
White, Steven R. .
PHYSICAL REVIEW B, 2009, 79 (24)
[6]   Microscopic origin of the '0.7-anomaly' in quantum point contacts [J].
Bauer, Florian ;
Heyder, Jan ;
Schubert, Enrico ;
Borowsky, David ;
Taubert, Daniela ;
Bruognolo, Benedikt ;
Schuh, Dieter ;
Wegscheider, Werner ;
von Delft, Jan ;
Ludwig, Stefan .
NATURE, 2013, 501 (7465) :73-78
[7]  
Binder M., ARXIV14113033
[8]   "Light-Cone" Dynamics After Quantum Quenches in Spin Chains [J].
Bonnes, Lars ;
Essler, Fabian H. L. ;
Lauchli, Andreas M. .
PHYSICAL REVIEW LETTERS, 2014, 113 (18)
[9]   Numerical evaluation of Green's functions based on the Chebyshev expansion [J].
Braun, A. ;
Schmitteckert, P. .
PHYSICAL REVIEW B, 2014, 90 (16)
[10]   The density matrix renormalization group for a quantum spin chain at non-zero temperature [J].
Bursill, RJ ;
Xiang, T ;
Gehring, GA .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (40) :L583-L590