LARGE-TIME REGULAR SOLUTIONS TO THE MODIFIED QUASI-GEOSTROPHIC EQUATION IN BESOV SPACES

被引:4
作者
Tan, Wen [1 ]
Dong, Bo-Qing [1 ]
Chen, Zhi-Min [1 ]
机构
[1] Shenzhen Univ, Sch Math & Stat, Shenzhen 518052, Peoples R China
基金
中国国家自然科学基金;
关键词
Modified quasi-geostrophic equations; Besov spaces; local well-posedness; smoothing effect; large-time global regular solutions; GLOBAL WELL-POSEDNESS; NAVIER-STOKES EQUATIONS; MAXIMUM-PRINCIPLES; INITIAL DATA; CRITERION;
D O I
10.3934/dcds.2019152
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of the modified quasi-geostrophic equation partial derivative(t)theta + u . del theta + nu Lambda(alpha)theta = 0 with u = Lambda R-beta(perpendicular to)theta in R-2. By the Littlewood-Paley theory, we obtain the local well-posedness and the smoothing effect of the equation in critical Besov spaces. These results are applied to show the global existence of regular solutions for the critical case beta = alpha - 1 and the existence of regular solutions for large time t > T with respect to the supercritical case beta > alpha - 1 in Besov spaces. Earlier results for the equation in Hilbert spaces H-s spaces are improved.
引用
收藏
页码:3749 / 3765
页数:17
相关论文
共 35 条
[1]  
[Anonymous], 1995, DYNAMICAL PROBLEMS N
[2]   Global well-posedness of dissipative quasi-geostrophic equations in critical spaces [J].
Bae, Hantaek .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (01) :257-261
[3]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[4]  
Caffarelli LA, 2010, ANN MATH, V171, P1903
[5]   Global well-posedness in the super-critical dissipative quasi-geostrophic equations [J].
Chae, D ;
Lee, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 233 (02) :297-311
[6]   A new Bernstein's inequality and the 2D dissipative quasi-geostrophic equation [J].
Chen, Qionglei ;
Miao, Changxing ;
Zhang, Zhifei .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (03) :821-838
[7]   Homogeneity Criterion for the Navier-Stokes Equations in the Whole Spaces [J].
Chen, Zhi Min ;
Xin, Zhouping .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (02) :152-182
[8]   FORMATION OF STRONG FRONTS IN THE 2-D QUASI-GEOSTROPHIC THERMAL ACTIVE SCALAR [J].
CONSTANTIN, P ;
MAJDA, AJ ;
TABAK, E .
NONLINEARITY, 1994, 7 (06) :1495-1533
[9]   Behavior of solutions of 2D quasi-geostrophic equations [J].
Constantin, P ;
Wu, JH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (05) :937-948
[10]   Nonlinear maximum principles for dissipative linear nonlocal operators and applications [J].
Constantin, Peter ;
Vicol, Vlad .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2012, 22 (05) :1289-1321