Creep-fatigue life assessment of cruciform weldments using the linear matching method

被引:29
|
作者
Gorash, Yevgen [1 ]
Chen, Haofeng [1 ]
机构
[1] Univ Strathclyde, Dept Mech & Aerosp Engn, Glasgow G1 1XJ, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Creep; Damage; Finite element analysis; FSRF; Low-cycle fatigue; Type; 316; steel; Weldment; R5; PROCEDURES; BEHAVIOR;
D O I
10.1016/j.ijpvp.2012.12.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a creep-fatigue life assessment of a cruciform weldment made of the steel AISI type 316N(L) and subjected to reversed bending and cyclic dwells at 550 degrees C using the Linear Matching Method (LMM) and considering different weld zones. The design limits are estimated by the shakedown analysis using the LMM and elastic-perfectly-plastic material model. The creep-fatigue analysis is implemented using the following material models: 1) Ramberg-Osgood model for plastic strains under saturated cyclic conditions; 2) power-law model in "time hardening" form for creep strains during primary creep stage. The number of cycles to failure N-star under creep-fatigue interaction is defined by: a) relation for cycles to fatigue failure N* dependent on numerical total strain range Delta epsilon(tot) for the fatigue damage omega(f); b) long-term strength relation for the time to creep rupture t* dependent on numerical average stress (sigma) over bar during dwell Delta t for the creep damage omega(cr); c) non-linear creep-fatigue interaction diagram for the total damage. Numerically estimated N-star for different Delta t and Delta epsilon(tot) shows good quantitative agreement with experiments. A parametric study of different dwell times Delta t is used to formulate the functions for N-star and residual life L-star dependent on Delta t and normalised bending moment (M) over tilde, and the corresponding contour plot intended for design applications is created. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [31] A novel fatigue and creep-fatigue life prediction model by combining data-driven approach with domain knowledge
    Gu, Hang-Hang
    Zhang, Xian-Cheng
    Zhang, Kun
    Li, Kai-Shang
    Tu, Shan-Tung
    Wang, Run-Zi
    INTERNATIONAL JOURNAL OF FATIGUE, 2024, 186
  • [32] DAMAGE ASSESSMENT OF SIMILAR MARTENSITIC WELDS UNDER CREEP, FATIGUE AND CREEP-FATIGUE LOADING
    Bender, Thorben
    Klenk, Andreas
    Weihe, Stefan
    PROCEEDINGS OF THE ASME 2020 PRESSURE VESSELS & PIPING CONFERENCE (PVP2020), VOL 6, 2020,
  • [33] Review of creep-fatigue endurance and life prediction of 316 stainless steels
    Yan, Xiao-Li
    Zhang, Xian-Cheng
    Tu, Shan-Tung
    Mannan, Sardari-Lal
    Xuan, Fu-Zhen
    Lin, Yong-Cheng
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2015, 126 : 17 - 28
  • [34] A new experimental testing method for investigation of creep dominant creep-fatigue interaction in Alloy 617 at 950 °C
    Tahir, Fraaz
    Liu, Yongming
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2017, 154 : 75 - 82
  • [35] ANSYS Creep-Fatigue Assessment tool for EUROFER97 components
    Mahler, M.
    Oezkan, F.
    Aktaa, J.
    NUCLEAR MATERIALS AND ENERGY, 2016, 9 : 535 - 538
  • [36] Creep-fatigue Damage and Life Prediction of Alloy Steels
    Ogata, Takashi
    CREEP & FRACTURE IN HIGH TEMPERATURE COMPONENTS: DESIGN & LIFE ASSESSMENT ISSUES, PROCEEDINGS, 2009, : 455 - 466
  • [37] A strain energy density method for the prediction of creep-fatigue damage in high temperature components
    Payten, Warwick M.
    Dean, David W.
    Snowden, Ken U.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (7-8): : 1920 - 1925
  • [38] Creep-fatigue damage and life prediction of alloy steels
    Ogata, Takashi
    MATERIALS AT HIGH TEMPERATURES, 2010, 27 (01) : 11 - 19
  • [39] Life Prediction of Stainless Steels under Creep-fatigue
    He, Xiaocong
    DAMAGE ASSESSMENT OF STRUCTURES VIII, 2009, 413-414 : 725 - 732
  • [40] Advances on creep-fatigue damage assessment in notched components
    Barbera, D.
    Chen, H.
    Liu, Y.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2017, 40 (11) : 1854 - 1867