Creep-fatigue life assessment of cruciform weldments using the linear matching method

被引:30
作者
Gorash, Yevgen [1 ]
Chen, Haofeng [1 ]
机构
[1] Univ Strathclyde, Dept Mech & Aerosp Engn, Glasgow G1 1XJ, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Creep; Damage; Finite element analysis; FSRF; Low-cycle fatigue; Type; 316; steel; Weldment; R5; PROCEDURES; BEHAVIOR;
D O I
10.1016/j.ijpvp.2012.12.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a creep-fatigue life assessment of a cruciform weldment made of the steel AISI type 316N(L) and subjected to reversed bending and cyclic dwells at 550 degrees C using the Linear Matching Method (LMM) and considering different weld zones. The design limits are estimated by the shakedown analysis using the LMM and elastic-perfectly-plastic material model. The creep-fatigue analysis is implemented using the following material models: 1) Ramberg-Osgood model for plastic strains under saturated cyclic conditions; 2) power-law model in "time hardening" form for creep strains during primary creep stage. The number of cycles to failure N-star under creep-fatigue interaction is defined by: a) relation for cycles to fatigue failure N* dependent on numerical total strain range Delta epsilon(tot) for the fatigue damage omega(f); b) long-term strength relation for the time to creep rupture t* dependent on numerical average stress (sigma) over bar during dwell Delta t for the creep damage omega(cr); c) non-linear creep-fatigue interaction diagram for the total damage. Numerically estimated N-star for different Delta t and Delta epsilon(tot) shows good quantitative agreement with experiments. A parametric study of different dwell times Delta t is used to formulate the functions for N-star and residual life L-star dependent on Delta t and normalised bending moment (M) over tilde, and the corresponding contour plot intended for design applications is created. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 32 条
[1]   R5 procedures for assessing structural integrity of components under creep and creep-fatigue conditions [J].
Ainsworth, RA .
INTERNATIONAL MATERIALS REVIEWS, 2006, 51 (02) :107-126
[2]  
Ainsworth RA, 2001, T 16 INT C STRUCT ME, P1
[3]  
Ainsworth RA, 1999, R5 ASSESSMENT PROCED
[4]  
[Anonymous], 2005, NIMS CREEP DAT SHEET
[5]  
Bate SK, 2005, SAEIG118904002 BRIT
[6]  
Boyle JT, 1983, Stress Analysis for Creep
[7]  
Bree J., 1967, Journal of Strain Analysis, V2, P226, DOI [DOI 10.1243/03093247V023226, 10.1243/03093247v023226]
[8]  
Bretherton I, 1999, AEAT3406 BRIT EN GEN
[9]  
Bretherton I, 1999, T 15 INT C STRUCT ME, P185
[10]  
Bretherton I, 2004, RJCBRD01186R01 BRIT