Diel CO2 cycles do not modify juvenile growth, survival and otolith development in two coral reef fish under ocean acidification

被引:20
作者
Jarrold, Michael D. [1 ,2 ]
Munday, Philip L. [2 ]
机构
[1] James Cook Univ, Coll Sci & Engn, Townsville, Qld 4811, Australia
[2] James Cook Univ, ARC Ctr Excellence Coral Reef Studies, Townsville, Qld 4811, Australia
基金
澳大利亚研究理事会;
关键词
SEAWATER CARBONATE CHEMISTRY; ELEVATED CO2; PH; IMPACTS; CALCIFICATION; RESPONSES; VARIABILITY; ACID; DISSOCIATION; TOLERANCE;
D O I
10.1007/s00227-018-3311-5
中图分类号
Q17 [水生生物学];
学科分类号
071004 ;
摘要
Recent studies show that daily variation in pCO(2) levels can modify the life-history and calcification responses of marine organisms to ocean acidification. The early life stages of coral reef fish exhibit varied growth, survival and otolith development responses to elevated pCO(2), yet no studies to date have considered the substantial diel pCO(2) cycles that occur in shallow reef habitats. Here, we reared three clutches of juvenile Acanthochromis polyacanthus and Amphiprion percula under control (500 mu atm), stable, elevated (1000 mu atm) and diel cycling, elevated (1000 +/- 300 and 1000 +/- 500 mu atm) pCO(2) for 11 and 6 weeks, respectively. Survival was unaffected by exposure to either elevated stable or diel cycling pCO(2) conditions in both species. For A. polyacanthus there was a non-significant trend of decreased standard length and wet weight under stable, elevated pCO(2) conditions, whereas values in both the diel cycling treatments were closer to those observed under control conditions. A similar non-significant trend was observed for Am. percula, except that exposure to stable, elevated pCO(2) conditions resulted in slightly longer and heavier fish. Finally, otolith size, shape and symmetry in both species were unaffected by exposure to either elevated stable or diel cycling pCO(2) conditions. Overall, our results suggest that the growth, survival and otolith development of juvenile coral reef fishes under ocean acidification is unlikely to be affected, in isolation, by diel cycles in pCO(2).
引用
收藏
页数:12
相关论文
共 73 条
[1]   Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef [J].
Albright, R. ;
Langdon, C. ;
Anthony, K. R. N. .
BIOGEOSCIENCES, 2013, 10 (10) :6747-6758
[2]   Effects of pH variability on the intertidal isopod, Paradella dianae [J].
Alenius, Beatrice ;
Munguia, Pablo .
MARINE AND FRESHWATER BEHAVIOUR AND PHYSIOLOGY, 2012, 45 (04) :245-259
[3]  
[Anonymous], 2017, R LANG ENV STAT COMP
[4]  
[Anonymous], 2017, Package 'nlme'. linear and nonlinear mixed effects models.
[5]   Complete intracellular pH protection during extracellular pH depression is associated with hypercarbia tolerance in white sturgeon, Acipenser transmontanus [J].
Baker, D. W. ;
Matey, V. ;
Huynh, K. T. ;
Wilson, J. M. ;
Morgan, J. D. ;
Brauner, C. J. .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2009, 296 (06) :R1868-R1880
[6]   Large Natural pH, CO2 and O2 Fluctuations in a Temperate Tidal Salt Marsh on Diel, Seasonal, and Interannual Time Scales [J].
Baumann, Hannes ;
Wallace, Ryan B. ;
Tagliaferri, Tristen ;
Gobler, Christopher J. .
ESTUARIES AND COASTS, 2015, 38 (01) :220-231
[7]   Reduced early life growth and survival in a fish in direct response to increased carbon dioxide [J].
Baumann, Hannes ;
Talmage, Stephanie C. ;
Gobler, Christopher J. .
NATURE CLIMATE CHANGE, 2012, 2 (01) :38-41
[8]   Ocean acidification alters the otoliths of a pantropical fish species with implications for sensory function [J].
Bignami, Sean ;
Enochs, Ian C. ;
Manzello, Derek P. ;
Sponaugle, Su ;
Cowen, Robert K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (18) :7366-7370
[9]   Response to ocean acidification in larvae of a large tropical marine fish, Rachycentron canadum [J].
Bignami, Sean ;
Sponaugle, Su ;
Cowen, Robert K. .
GLOBAL CHANGE BIOLOGY, 2013, 19 (04) :996-1006
[10]   Biological responses to environmental heterogeneity under future ocean conditions [J].
Boyd, Philip W. ;
Cornwall, Christopher E. ;
Davison, Andrew ;
Doney, Scott C. ;
Fourquez, Marion ;
Hurd, Catriona L. ;
Lima, Ivan D. ;
McMinn, Andrew .
GLOBAL CHANGE BIOLOGY, 2016, 22 (08) :2633-2650