Cluster synchronisation of Lur'e dynamical networks

被引:24
作者
Guo, L. [1 ]
Nian, X. [1 ]
Zhao, Y. [2 ]
Duan, Z. [2 ]
机构
[1] Cent S Univ, Sch Informat Sci & Engn, Changsha 410075, Hunan, Peoples R China
[2] Peking Univ, State Key Lab Turbulence & Complex Syst, Dept Mech & Aerosp Engn, Coll Engn, Beijing 100871, Peoples R China
关键词
MASTER-SLAVE SYNCHRONIZATION; COMPLEX NETWORKS; IMPULSIVE SYNCHRONIZATION; ABSOLUTE STABILITY; SYSTEMS; CONTROLLERS; CONSENSUS; FEEDBACK;
D O I
10.1049/iet-cta.2012.0467
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study investigates the cluster synchronisation problem of complex networks with each node being a Lur'e system. Some criteria for cluster synchronisation are presented by using a local linear control strategy. According to Lyapunov stability theory, sufficient conditions are first established to realise cluster synchronisation of the Lur'e dynamical networks. Then, a sufficient condition in the frequency domain is also formulated in the framework of the absolute stability theory. The notion of the cluster-synchronised region is introduced, and some conditions guaranteeing the cluster-synchronised region are derived. Furthermore, the cluster synchronisation in the Lur'e networks with time-varying delay is considered. Finally, some numerical examples illustrate the effectiveness of the theoretical results.
引用
收藏
页码:2499 / 2508
页数:10
相关论文
共 39 条
[21]   Projective synchronization in three-dimensional chaotic systems [J].
Mainieri, R ;
Rehacek, J .
PHYSICAL REVIEW LETTERS, 1999, 82 (15) :3042-3045
[22]   Generalized synchronization via nonlinear control [J].
Meng Juan ;
Wang Xingyuan .
CHAOS, 2008, 18 (02)
[23]   Master stability functions for synchronized coupled systems [J].
Pecora, LM ;
Carroll, TL .
PHYSICAL REVIEW LETTERS, 1998, 80 (10) :2109-2112
[24]   On the Kalman-Yakubovich-Popov lemma [J].
Rantzer, A .
SYSTEMS & CONTROL LETTERS, 1996, 28 (01) :7-10
[25]   Phase synchronization of chaotic oscillators [J].
Rosenblum, MG ;
Pikovsky, AS ;
Kurths, J .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1804-1807
[26]   GENERALIZED SYNCHRONIZATION OF CHAOS IN DIRECTIONALLY COUPLED CHAOTIC SYSTEMS [J].
RULKOV, NF ;
SUSHCHIK, MM ;
TSIMRING, LS ;
ABARBANEL, HDI .
PHYSICAL REVIEW E, 1995, 51 (02) :980-994
[27]   The Goodwin model:: Simulating the effect of light pulses on the circadian sporulation rhythm of Neurospora Crassa [J].
Ruoff, P ;
Vinsjevik, M ;
Monnerjahn, C ;
Rensing, L .
JOURNAL OF THEORETICAL BIOLOGY, 2001, 209 (01) :29-42
[28]   Impulsive synchronization of chaotic Lur'e systems by measurement feedback [J].
Suykens, JAK ;
Yang, T ;
Chua, LO .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (06) :1371-1381
[29]   Observability of lag synchronization of coupled chaotic oscillators [J].
Taherion, S ;
Lai, YC .
PHYSICAL REVIEW E, 1999, 59 (06) :R6247-R6250
[30]   Cluster synchronization in community networks with nonidentical nodes [J].
Wang, Kaihua ;
Fu, Xinchu ;
Li, Kezan .
CHAOS, 2009, 19 (02)