Topological String Theory on Compact Calabi-Yau: Modularity and Boundary Conditions

被引:102
作者
Huang, M. -x. [1 ]
Klemm, A. [1 ]
Quackenbush, S. [1 ]
机构
[1] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
来源
HOMOLOGICAL MIRROR SYMMETRY: NEW DEVELOPMENTS AND PERSPECTIVES | 2009年 / 757卷
关键词
MIRROR SYMMETRY; D-BRANES; COMPACTIFICATIONS; SINGULARITIES; EQUATIONS; ANOMALIES; DUALITY; MODELS;
D O I
10.1007/978-3-540-68030-7_3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The topological string partition function Z(lambda,t,(t) over bar ) = exp(lambda F-2g-2(g)(t,(t) over bar) is calculated on a compact Calabi-Yau M. The F-g(t,(t) over bar) fulfil the holomorphic anomaly equations, which imply that psi = Z transforms as a wave function on the symplectic space H-3(M,Z). This defines it everywhere in the moduli space. M(M) along with preferred local coordinates. Modular properties of the sections F-g as well as local constraints from the 4d effective action allow us to fix Z to a large extent. Currently with a newly found gap condition at the conifold, regularity at the orbifold and the most naive bounds from Castelnuovo's theory, we can provide the boundary data, which specify Z, e.g. up to genus 51 for the quintic.
引用
收藏
页码:45 / 102
页数:58
相关论文
共 70 条
[1]   Topological strings and integrable hierarchies [J].
Aganagic, M ;
Dijkgraaf, R ;
Klemm, A ;
Mariño, M ;
Vafa, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 261 (02) :451-516
[2]   The topological vertex [J].
Aganagic, M ;
Klemm, A ;
Mariño, M ;
Vafa, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 254 (02) :425-478
[3]   Topological strings and (almost) modular forms [J].
Aganagic, Mina ;
Bouchard, Vincent ;
Klemm, Albrecht .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 277 (03) :771-819
[4]  
[Anonymous], 2004, FROBENIUS MANIFOLDS, VE36, P91
[5]  
ARNOLD VI, 1985, SINGULARITIES DIEFFE
[6]  
Aspinwall PS, 2005, PROGRESS IN STRING THEORY: TASI 2003 LECTURES NOTES, P1
[7]   HOLOMORPHIC ANOMALIES IN TOPOLOGICAL FIELD-THEORIES [J].
BERSHADSKY, M ;
CECOTTI, S ;
OOGURI, H ;
VAFA, C .
NUCLEAR PHYSICS B, 1993, 405 (2-3) :279-304
[8]   KODAIRA-SPENCER THEORY OF GRAVITY AND EXACT RESULTS FOR QUANTUM STRING AMPLITUDES [J].
BERSHADSKY, M ;
CECOTTI, S ;
OOGURI, H ;
VAFA, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (02) :311-427
[9]  
BRIDGELAND T, 2006, ARXIVMATHAG0602129
[10]   D-branes on the quintic [J].
Brunner, I ;
Douglas, MR ;
Lawrence, A ;
Römelsberger, C .
JOURNAL OF HIGH ENERGY PHYSICS, 2000, (08) :9-72