A note on topological feedback entropy and invariance entropy

被引:71
作者
Colonius, Fritz [1 ]
Kawan, Christoph [1 ]
Nair, Girish [2 ]
机构
[1] Univ Augsburg, Inst Math, Univ Str 8, D-86159 Augsburg, Germany
[2] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Topological feedback entropy; Invariance entropy;
D O I
10.1016/j.sysconle.2013.01.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For discrete-time control systems, notions of entropy for invariance are compared. One is based on feedbacks, and the other one on open-loop control functions. Under a strong invariance condition, it is shown that they are essentially equivalent. Several modifications are also discussed. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:377 / 381
页数:5
相关论文
共 18 条
[1]  
ADLER RL, 1965, T AM MATH SOC, V115, P1
[3]   CORRECTION [J].
BOWEN, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 181 (JUL) :509-510
[4]   Entropy of controlled invariant subspaces [J].
Colonius, Fritz ;
Helmke, Uwe .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2014, 94 (04) :331-344
[5]   Invariance entropy for outputs [J].
Colonius, Fritz ;
Kawan, Christoph .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2011, 22 (03) :203-227
[6]   INVARIANCE ENTROPY FOR CONTROL SYSTEMS [J].
Colonius, Fritz ;
Kawan, Christoph .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2009, 48 (03) :1701-1721
[7]  
Da Silva A., 2013, MATH CONTROL SIGNALS
[8]  
Dinaburg E., 1971, MATH USSR IZV, V5, P337, DOI [10.1070/IM1971v005n02ABEH001050, DOI 10.1070/IM1971V005N02ABEH001050]
[9]  
Downarowicz T., 2011, NEW MATH MONOGRAPHS, V18
[10]  
Katok A., 1995, INTRO MODERN THEORY, DOI 10.1017/CBO9780511809187