Characterisation of plasma breakdown at JET with a carbon and ITER-like wall

被引:37
作者
de Vries, P. C. [1 ]
Sips, A. C. C. [2 ,3 ]
Kim, H. T. [4 ,5 ]
Lomas, P. J. [4 ]
Maviglia, F. [6 ]
Albanese, R. [6 ]
Coffey, I. [7 ]
Joffrin, E. [8 ]
Lehnen, M. [9 ]
Manzanares, A. [10 ]
O'Mulane, M. [4 ]
Nunes, I. [2 ,11 ]
van Rooij, G. [1 ]
Rimini, F. G. [4 ]
Stamp, M. F. [4 ]
机构
[1] EURATOM, FOM Inst DIFFER, NL-3430 BE Nieuwegein, Netherlands
[2] European Commiss, Brussels, Belgium
[3] Culham Sci Ctr, EFDA CSU, Abingdon OX14 3DB, Oxon, England
[4] EURATOM, Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
[5] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England
[6] Univ Naples Federico II, Assoc EURATOM ENEA CREATE, Naples, Italy
[7] Queens Univ Belfast, Dept Math & Phys, Belfast BT7 1NN, Antrim, North Ireland
[8] Assoc Euratom CEA, CEA IRFM, F-13108 Cadarache, France
[9] Forschungszentrum Julich, EURATOM Assoc, Inst Energie & Klimatforsch IEK 4, D-52425 Julich, Germany
[10] EURATOM CIEMAT Assoc, Lab Nacl Fus, Madrid, Spain
[11] Assoc EURATOM IST, Inst Plasmas & Fusao Nucl, Lisbon, Portugal
关键词
DIII-D; STARTUP;
D O I
10.1088/0029-5515/53/5/053003
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The recent installation of a full metal, ITER-like, first wall provided the opportunity to study the impact of the plasma-facing materials on plasma initiation or breakdown. This study for the first time presents a full experimental characterisation of tokamak breakdown at JET, using all discharges since 2008, covering both operations with a main chamber carbon and a beryllium ITER-like main chamber wall. It was found that the avalanche phase was unaffected by the change in wall material. However, changes in out-gassing by the wall and lower carbon levels resulted in better controlled density and significantly lower radiation during the burn-through phase with the ITER-like wall. Breakdown failures, that usually developed with a carbon wall during the burn-through phase (especially after disruptions) were absent with the ITER-like wall. These observations match with the results obtained from a new model of plasma burn-through that includes plasma-surface interactions (Kim et al 2012 Nucl. Fusion 52 103016). This shows that chemical sputtering of carbon is the determining factor for the impurity content, and hence also radiation, during the burn-through phase for operations with a carbon wall. As seen experimentally, with a beryllium main wall, the plasma surface effects predicted by the model do not raise the radiation levels much above those expected for pure deuterium plasmas. With the ITER-like wall, operation with higher pre-fill pressures, and thus higher breakdown densities, was possible, which helped maintaining the density after breakdown.
引用
收藏
页数:12
相关论文
共 25 条
[1]   Prediction of the growth rates of VDEs in JET [J].
Albanese, R ;
Mattei, M ;
Villone, F .
NUCLEAR FUSION, 2004, 44 (09) :999-1007
[2]   Experimental results with an optimized magnetic field configuration for JET breakdown [J].
Albanese, R. ;
Maviglia, F. ;
Lomas, P. J. ;
Manzanares, A. ;
Mattei, M. ;
Neto, A. ;
Rimini, F. G. ;
de Vries, P. C. .
NUCLEAR FUSION, 2012, 52 (12)
[3]   Simultaneous Cotton-Mouton and Faraday rotation angle measurements on JET [J].
Boboc, A. ;
Zabeo, L. ;
Murari, A. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (10)
[4]  
Brezinsek S., 2012, NUCL FUSION UNPUB
[5]   Determination of metal impurity density,ΔZeff and dilution on JET by VUV emission spectroscopy [J].
Czarnecka, A. ;
Zastrow, K-D ;
Rzadkiewicz, J. ;
Coffey, I. H. ;
Lawson, K. D. ;
O'Mullane, M. G. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (03)
[6]   The impact of the ITER-like wall at JET on disruptions [J].
de Vries, P. C. ;
Arnoux, G. ;
Huber, A. ;
Flanagan, J. ;
Lehnen, M. ;
Riccardo, V. ;
Reux, C. ;
Jachmich, S. ;
Lowry, C. ;
Calabro, G. ;
Frigione, D. ;
Tsalas, M. ;
Hartmann, N. ;
Brezinsek, S. ;
Clever, M. ;
Douai, D. ;
Groth, M. ;
Hender, T. C. ;
Hodille, E. ;
Joffrin, E. ;
Kruezi, U. ;
Matthews, G. F. ;
Morris, J. ;
Neu, R. ;
Philipps, V. ;
Sergienko, G. ;
Sertoli, M. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2012, 54 (12)
[7]  
Giroud C., 2012, 24 IAEA FUS EN C SAN
[8]   Upgraded bolometer system on JET for improved radiation measurements [J].
Huber, A. ;
McCormick, K. ;
Andrew, P. ;
Beaumont, P. ;
Dalley, S. ;
Fink, J. ;
Fuchs, J. C. ;
Fullard, K. ;
Fundamenski, W. ;
Ingessond, L. C. ;
Mast, F. ;
Jachmich, S. ;
Matthews, G. F. ;
Mertens, Ph. ;
Philipps, V. ;
Pitts, R. A. ;
Sanders, S. ;
Zeidner, W. .
FUSION ENGINEERING AND DESIGN, 2007, 82 (5-14) :1327-1334
[9]   Noninductive plasma initiation and startup in the DIII-D tokamak [J].
Jackson, G. L. ;
Humphreys, D. A. ;
Hyatt, A. W. ;
Lohr, J. M. ;
Luce, T. C. ;
Yu, J. H. .
NUCLEAR FUSION, 2011, 51 (08)
[10]   Understanding and predicting the dynamics of tokamak discharges during startup and rampdown [J].
Jackson, G. L. ;
Politzer, P. A. ;
Humphreys, D. A. ;
Casper, T. A. ;
Hyatt, A. W. ;
Leuer, J. A. ;
Lohr, J. ;
Luce, T. C. ;
Van Zeeland, M. A. ;
Yu, J. H. .
PHYSICS OF PLASMAS, 2010, 17 (05)