Reduction of the sign problem near T=0 in quantum Monte Carlo simulations

被引:4
|
作者
D'Emidio, Jonathan [1 ]
Wessel, Stefan [2 ,3 ]
Mila, Frederic [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Inst Phys, CH-1015 Lausanne, Switzerland
[2] Rhein Westfal TH Aachen, Inst Theoret Festkorperphys, JARA FIT, D-52056 Aachen, Germany
[3] Rhein Westfal TH Aachen, JARA HPC, D-52056 Aachen, Germany
关键词
MATRIX RENORMALIZATION-GROUP; HEISENBERG-ANTIFERROMAGNET; HEAT;
D O I
10.1103/PhysRevB.102.064420
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Building on a recent investigation of the Shastry-Sutherland model [S. Wessel et al., Phys. Rev. B 98, 174432 (2018)], we develop a general strategy to eliminate the Monte Carlo sign problem near the zero-temperature limit in frustrated quantum spin models. If the Hamiltonian of interest and the sign-problem-free Hamiltonian, obtained by making all off-diagonal elements negative in a given basis, have the same ground state and this state is a member of the computational basis, then the average sign returns to one as the temperature goes to zero. We illustrate this technique by studying the triangular and kagome lattice Heisenberg antiferrromagnet in a magnetic field above saturation, as well as the Heisenberg antiferromagnet on a modified Husimi cactus in the dimer basis. We also provide detailed Appendices on using linear programming techniques to automatically generate efficient directed loop updates in quantum Monte Carlo simulations.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Fermion sign problem in path integral Monte Carlo simulations: grand-canonical ensemble
    Dornheim, Tobias
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (33)
  • [42] Multilevel blocking approach to the fermion sign problem in path-integral Monte Carlo simulations
    Mak, CH
    Egger, R
    Weber-Gottschick, H
    PHYSICAL REVIEW LETTERS, 1998, 81 (21) : 4533 - 4536
  • [43] Simple proof that there is no sign problem in path integral Monte Carlo simulations of fermions in one dimension
    Chin, Siu A.
    PHYSICAL REVIEW E, 2024, 109 (06)
  • [44] Randomized Dimension Reduction for Monte Carlo Simulations
    Kahale, Nabil
    MANAGEMENT SCIENCE, 2020, 66 (03) : 1421 - 1439
  • [45] Methods for variance reduction in Monte Carlo simulations
    Bixler, Joel N.
    Hokr, Brett H.
    Winblad, Aidan
    Elpers, Gabriel
    Zollars, Byron
    Thomas, Robert J.
    OPTICAL INTERACTIONS WITH TISSUE AND CELLS XXVII, 2016, 9706
  • [46] Quantum-Monte-Carlo simulations of polyethylene
    W. Michalke
    S. Kreitmeier
    The European Physical Journal B - Condensed Matter and Complex Systems, 1998, 4 : 469 - 473
  • [47] QUANTUM MONTE-CARLO SIMULATIONS FOR HIGH-T-C SUPERCONDUCTORS
    MURAMATSU, A
    DOPF, G
    WAGNER, J
    DIETERICH, P
    HANKE, W
    FESTKORPERPROBLEME - ADVANCES IN SOLID STATE PHYSICS 32, 1992, 32 : 317 - 331
  • [48] Quantum Monte Carlo simulations of exciton condensates
    Shumway, J
    Ceperley, DM
    SOLID STATE COMMUNICATIONS, 2005, 134 (1-2) : 19 - 22
  • [49] Worm algorithm in quantum Monte Carlo simulations
    Prokof'ev, N.V.
    Svistunov, B.V.
    Tupitsyn, I.S.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 238 (4-5): : 253 - 257
  • [50] Quantum Monte Carlo Simulations in Momentum Space
    戴希
    Chinese Physics Letters, 2022, 39 (05) : 4