In vitro activity of apramycin against multidrug-, carbapenem- and aminoglycoside-resistant Enterobacteriaceae and Acinetobacter baumannii

被引:83
作者
Juhas, Mario [1 ]
Widlake, Emma [2 ]
Teo, Jeanette [3 ]
Huseby, Douglas L. [4 ]
Tyrrell, Jonathan M. [2 ]
Polikanov, Yury S. [5 ]
Ercan, Onur [4 ]
Petersson, Anna [4 ]
Cao, Sha [4 ]
Aboklaish, Ali F. [2 ]
Rominski, Anna [1 ]
Crich, David [6 ]
Bottger, Erik C. [1 ]
Walsh, Timothy R. [2 ]
Hughes, Diarmaid [4 ]
Hobbie, Sven N. [1 ]
机构
[1] Univ Zurich, Inst Med Microbiol, Gloriastr 30, CH-8006 Zurich, Switzerland
[2] Cardiff Univ, Sch Med, Div Infect & Immun, Cardiff CF14 4XN, S Glam, Wales
[3] Natl Univ Singapore Hosp, Dept Lab Med, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
[4] Uppsala Univ, Dept Med Biochem & Microbiol, Husargatan 3, S-75123 Uppsala, Sweden
[5] Univ Illinois, Coll Liberal Arts & Sci, Dept Biol Sci, 900 South Ashland Ave,MBRB 4170, Chicago, IL 60607 USA
[6] Wayne State Univ, Dept Chem, 5101 Cass Ave, Detroit, MI 48202 USA
基金
英国生物技术与生命科学研究理事会;
关键词
GRAM-NEGATIVE BACTERIA; MECHANISMS; COLISTIN; SUSCEPTIBILITY; ANTIBIOTICS; PAROMOMYCIN; TIGECYCLINE; EMERGENCE; DESIGN; STRAIN;
D O I
10.1093/jac/dky546
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Objectives Widespread antimicrobial resistance often limits the availability of therapeutic options to only a few last-resort drugs that are themselves challenged by emerging resistance and adverse side effects. Apramycin, an aminoglycoside antibiotic, has a unique chemical structure that evades almost all resistance mechanisms including the RNA methyltransferases frequently encountered in carbapenemase-producing clinical isolates. This study evaluates the in vitro activity of apramycin against multidrug-, carbapenem- and aminoglycoside-resistant Enterobacteriaceae and Acinetobacter baumannii, and provides a rationale for its superior antibacterial activity in the presence of aminoglycoside resistance determinants. Methods A thorough antibacterial assessment of apramycin with 1232 clinical isolates from Europe, Asia, Africa and South America was performed by standard CLSI broth microdilution testing. WGS and susceptibility testing with an engineered panel of aminoglycoside resistance-conferring determinants were used to provide a mechanistic rationale for the breadth of apramycin activity. Results MIC distributions and MIC90 values demonstrated broad antibacterial activity of apramycin against Escherichia coli, Klebsiella pneumoniae, Enterobacter spp., Morganella morganii, Citrobacter freundii, Providencia spp., Proteus mirabilis, Serratia marcescens and A. baumannii. Genotypic analysis revealed the variety of aminoglycoside-modifying enzymes and rRNA methyltransferases that rendered a remarkable proportion of clinical isolates resistant to standard-of-care aminoglycosides, but not to apramycin. Screening a panel of engineered strains each with a single well-defined resistance mechanism further demonstrated a lack of cross-resistance to gentamicin, amikacin, tobramycin and plazomicin. Conclusions Its superior breadth of activity renders apramycin a promising drug candidate for the treatment of systemic Gram-negative infections that are resistant to treatment with other aminoglycoside antibiotics.
引用
收藏
页码:944 / 952
页数:9
相关论文
共 54 条
[1]  
[Anonymous], 2016, CSH PERSPECT MED
[2]   Molecular mechanisms of antibiotic resistance [J].
Blair, Jessica M. A. ;
Webber, Mark A. ;
Baylay, Alison J. ;
Ogbolu, David O. ;
Piddock, Laura J. V. .
NATURE REVIEWS MICROBIOLOGY, 2015, 13 (01) :42-51
[3]   Mortality in Patients With Septic Shock by Multidrug Resistant Bacteria Risk Factors and Impact of Sepsis Treatments [J].
Busani, Stefano ;
Serafini, Giulia ;
Mantovani, Elena ;
Venturelli, Claudia ;
Giannella, Maddalena ;
Viale, Pierluigi ;
Mussini, Cristina ;
Cossarizza, Andrea ;
Girardis, Massimo .
JOURNAL OF INTENSIVE CARE MEDICINE, 2019, 34 (01) :48-54
[4]  
Clinical and Laboratory Standards Institute, 2015, M07A10 CLIN LAB STAN
[5]   Plazomicin Retains Antibiotic Activity against Most Aminoglycoside Modifying Enzymes [J].
Cox, Georgina ;
Ejim, Linda ;
Stogios, Peter J. ;
Koteva, Kalinka ;
Bordeleau, Emily ;
Evdokimova, Elena ;
Sieron, Arthur O. ;
Savchenko, Alexei ;
Serio, Alisa W. ;
Krause, Kevin M. ;
Wright, Gerard D. .
ACS INFECTIOUS DISEASES, 2018, 4 (06) :980-987
[6]   ENZYMATIC MODIFICATION OF AMINOGLYCOSIDE ANTIBIOTICS - 3-N-ACETYLTRANSFERASE WITH BROAD SPECIFICITY THAT DETERMINES RESISTANCE TO NOVEL AMINOGLYCOSIDE APRAMYCIN [J].
DAVIES, J ;
OCONNOR, S .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1978, 14 (01) :69-72
[7]   Design, construction and characterization of a set of insulated bacterial promoters [J].
Davis, Joseph H. ;
Rubin, Adam J. ;
Sauer, Robert T. .
NUCLEIC ACIDS RESEARCH, 2011, 39 (03) :1131-1141
[8]   Plazomicin Activity against 346 Extended-Spectrum-β-Lactamase/AmpC-Producing Escherichia coli Urinary Isolates in Relation to Aminoglycoside-Modifying Enzymes [J].
del Carmen Lopez-Diaz, Maria ;
Culebras, Esther ;
Rodriguez-Avial, Iciar ;
Rios, Esther ;
Manuel Vinuela-Prieto, Jose ;
Picazo, Juan J. ;
Rodriguez-Avial, Carmen .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2017, 61 (02)
[9]   Plazomicin activity against polymyxin-resistant Enterobacteriaceae, including MCR-1-producing isolates [J].
Denervaud-Tendon, Valerie ;
Poirel, Laurent ;
Connolly, Lynn E. ;
Krause, Kevin M. ;
Nordmann, Patrice .
JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2017, 72 (10) :2787-2791
[10]   Aminoglycoside Resistance The Emergence of Acquired 16S Ribosomal RNA Methyltransferases [J].
Doi, Yohei ;
Wachino, Jun-ichi ;
Arakawa, Yoshichika .
INFECTIOUS DISEASE CLINICS OF NORTH AMERICA, 2016, 30 (02) :523-+