Multiplication operators on non-commutative spaces

被引:5
作者
de Jager, P. [1 ]
Labuschagne, L. E. [1 ]
机构
[1] NWU, Unit BMI, DST NRF CoE Math & Stat Sci, Sch Comp Stat & Math Sci, Internal Box 209,PVT BAG X6001, ZA-2520 Potchefstroom, South Africa
基金
新加坡国家研究基金会;
关键词
Orlicz space; Non-commutative; Semi-finite; Multiplication operator; Bounded; Compact;
D O I
10.1016/j.jmaa.2019.03.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Boundedness and compactness properties of multiplication operators on quantum (non-commutative) function spaces are investigated. For endomorphic multiplication operators these properties can be characterized in the setting of quantum symmetric spaces. For non-endomorphic multiplication operators these properties can be completely characterized in the setting of quantum L-p-spaces and a partial solution obtained in the more general setting of quantum Orlicz spaces. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:874 / 894
页数:21
相关论文
共 50 条
[31]   MULTIPLICATION OPERATORS ON INVARIANT SUBSPACES OF FUNCTION SPACES [J].
Yousefi, B. ;
Khoshdel, Sh ;
Jahanshahi, Y. .
ACTA MATHEMATICA SCIENTIA, 2013, 33 (05) :1463-1470
[32]   Algebras of multiplication operators in Banach function spaces [J].
de Pagter, B ;
Ricker, WJ .
JOURNAL OF OPERATOR THEORY, 1999, 42 (02) :245-267
[33]   Reducing Subspaces of Multiplication Operators in Bergman Spaces [J].
Setareh Eskandari ;
Ali Abkar .
Iranian Journal of Science and Technology, Transactions A: Science, 2022, 46 :667-675
[34]   Orlicz-Lorentz spaces and their multiplication operators [J].
Erlin Castillo, Rene ;
Camilo Chaparro, Hector ;
Ramos Fernandez, Julio Cesar .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (05) :991-1009
[35]   On multiplication operators acting on Köthe sequence spaces [J].
Ramos-Fernández J.C. ;
Salas-Brown M. .
Afrika Matematika, 2017, 28 (3-4) :661-667
[36]   The non-commutative Robertson–Schrödinger uncertainty principle [J].
Agapitos N. Hatzinikitas .
Quantum Studies: Mathematics and Foundations, 2023, 10 :67-78
[37]   Generalized Spiked Harmonic Oscillator in Non-commutative Space [J].
Motavalli, Hossein ;
Akbarieh, Amin Rezaei .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (09) :2673-2678
[38]   Non-commutative integrability, paths and quasi-determinants [J].
Di Francesco, Philippe ;
Kedem, Rinat .
ADVANCES IN MATHEMATICS, 2011, 228 (01) :97-152
[39]   The non-commutative Robertson-Schrodinger uncertainty principle [J].
Hatzinikitas, Agapitos N. .
QUANTUM STUDIES-MATHEMATICS AND FOUNDATIONS, 2023, 10 (01) :67-78
[40]   Generalized Spiked Harmonic Oscillator in Non-commutative Space [J].
Hossein Motavalli ;
Amin Rezaei Akbarieh .
International Journal of Theoretical Physics, 2011, 50 :2673-2678