Room-Temperature Micron-Scale Exciton Migration in a Stabilized Emissive Molecular Aggregate

被引:100
作者
Caram, Justin R. [1 ]
Doria, Sandra [1 ]
Eisele, Dorthe M. [3 ]
Freyria, Francesca S. [1 ]
Sinclair, Timothy S. [1 ]
Rebentrost, Patrick [2 ]
Lloyd, Seth [2 ]
Bawendi, Moungi G. [1 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[3] CUNY City Coll, Dept Chem & Biochem, Ctr Discovery & Innovat, 160 Convent Ave, New York, NY 10031 USA
基金
美国国家科学基金会;
关键词
J-aggregate; molecular aggregate; exciton; exciton diffusion; coherent exciton; exciton delocalization; QUANTUM COHERENCE; FLUORESCENCE; TRANSPORT; DYNAMICS; MODEL; FILMS;
D O I
10.1021/acs.nanolett.6b02529
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report 1.6 +/- 1 mu m exciton transport in self-assembled supramolecular light-harvesting nanotubes (LHNs) assembled from amphiphillic cyanine dyes. We stabilize LHNs in a sucrose glass matrix, greatly reducing light and oxidative damage and allowing the observation of exciton-exciton annihilation signatures under weak excitation flux. Fitting to a one-dimensional diffusion model, we find an average exciton diffusion constant of 55 +/- 20 cm(2)/s, among the highest measured for an organic system. We develop a simple model that uses cryogenic measurements of static and dynamic energetic disorder to estimate a diffusion constant of 32 cm(2)/s, in agreement with experiment. We ascribe large exciton diffusion lengths to low static and dynamic energetic disorder in LHNs. We argue that matrix-stabilized LHNS represent an excellent model system to study coherent excitonic transport.
引用
收藏
页码:6808 / 6815
页数:8
相关论文
共 37 条
[1]   Visualization of exciton transport in ordered and disordered molecular solids [J].
Akselrod, Gleb M. ;
Deotare, Parag B. ;
Thompson, Nicholas J. ;
Lee, Jiye ;
Tisdale, William A. ;
Baldo, Marc A. ;
Menon, Vinod M. ;
Bulovic, Vladimir .
NATURE COMMUNICATIONS, 2014, 5
[2]  
[Anonymous], 1964, SOV PHYS-USP, DOI DOI 10.1070/PU1964V007N02ABEH003659
[3]  
[Anonymous], 2002, Molecular Mechanisms of Photosynthesis
[4]  
[Anonymous], 1999, PRINCIPLES NONLINEAR
[5]   Optimization of Exciton Trapping in Energy Transfer Processes [J].
Cao, Jianshu ;
Silbey, Robert J. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (50) :13825-13838
[6]   Noise-assisted energy transfer in quantum networks and light-harvesting complexes [J].
Chin, A. W. ;
Datta, A. ;
Caruso, F. ;
Huelga, S. F. ;
Plenio, M. B. .
NEW JOURNAL OF PHYSICS, 2010, 12
[7]   Temperature-Dependent Exciton Properties of Two Cylindrical J-Aggregates [J].
Clark, Katie A. ;
Krueger, Emma L. ;
Bout, David A. Vanden .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (42) :24325-24334
[8]   Direct Measurement of Energy Migration in Supramolecular Carbocyanine Dye Nanotubes [J].
Clark, Katie A. ;
Krueger, Emma L. ;
Vanden Bout, David A. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (13) :2274-2282
[9]   Extended dipole model for aggregates of dye molecules [J].
Czikklely, V. ;
Forsterling, H. D. ;
Kuhn, H. .
CHEMICAL PHYSICS LETTERS, 1970, 6 (03) :207-210
[10]   Structure, spectroscopy, and microscopic model of tubular carbocyanine dye aggregates [J].
Didraga, C ;
Pugzlys, A ;
Hania, PR ;
von Berlepsch, H ;
Duppen, K ;
Knoester, J .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (39) :14976-14985