The Promise and Challenge of In Vivo Delivery for Genome Therapeutics

被引:68
作者
Wilson, Ross C. [1 ,2 ]
Gilbert, Luke A. [1 ,3 ,4 ]
机构
[1] Univ Calif Berkeley, Innovat Genom Inst, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA
[3] Univ Calif San Francisco, Helen Diller Family Comprehens Canc Ctr, San Francisco, CA 94158 USA
[4] Univ Calif San Francisco, Dept Urol, San Francisco, CA 94158 USA
关键词
PLURIPOTENT STEM-CELLS; GENE-THERAPY; MOUSE MODEL; CAS9; RIBONUCLEOPROTEINS; DRUG-DELIVERY; MUSCULAR-DYSTROPHY; NONVIRAL DELIVERY; CLINICAL-TRIALS; ANIMAL-MODELS; LIVER-DISEASE;
D O I
10.1021/acschembio.7b00680
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CRISPR-based genome editing technologies are poised to enable countless new therapies to prevent, treat, or cure diseases with a genetic basis. However, the safe and effective delivery of genome editing enzymes represents a substantial challenge that must be tackled to enable the next generation of genetic therapies. In this Review, we summarize recent progress in developing enzymatic tools to combat genetic disease and examine current efforts to deliver these enzymes to the cells in need of correction. Viral vectors already in use for traditional gene therapy are being applied to enable in vivo CRISPR-based therapeutics, as are emerging technologies such as nanoparticle-based delivery of CRISPR components and direct delivery of preassembled RNA-protein complexes. Success in these areas will allow CRISPR-based genome editing therapeutics to reach their full potential.
引用
收藏
页码:376 / 382
页数:7
相关论文
共 50 条
  • [21] Nanocarriers for inhaled delivery of RNA therapeutics
    Huayamares, Sebastian G.
    Zenhausern, Ryan
    Loughrey, David
    CURRENT RESEARCH IN BIOTECHNOLOGY, 2024, 7
  • [22] In vivo delivery of CRISPR-Cas9 genome editing components for therapeutic applications
    Huang, Kun
    Zapata, Daniel
    Tang, Yan
    Teng, Yong
    Li, Yamin
    BIOMATERIALS, 2022, 291
  • [23] Lipid nanoparticles for delivery of RNA therapeutics Current status and the role of in vivo imaging
    Jung, Han Na
    Lee, Seok-Yong
    Lee, Somin
    Youn, Hyewon
    Im, Hyung-Ju
    THERANOSTICS, 2022, 12 (17): : 7509 - 7531
  • [24] Nanotechnology-Based Cancer Therapeutics—Promise and Challenge—Lessons Learned Through the NCI Alliance for Nanotechnology in Cancer
    Dorothy Farrell
    Krzysztof Ptak
    Nicholas J. Panaro
    Piotr Grodzinski
    Pharmaceutical Research, 2011, 28 : 273 - 278
  • [25] In Vivo Genome Engineering for the Treatment of Muscular Dystrophies
    Kustermann, Monika
    Rok, Matthew J.
    Cohn, Ronald D.
    Ivakine, Evgueni A.
    CURRENT STEM CELL REPORTS, 2020, 6 (03) : 52 - 66
  • [26] Delivery of mRNA Therapeutics for the Treatment of Hepatic Diseases
    Trepotec, Zeljka
    Lichtenegger, Eva
    Plank, Christian
    Aneja, Manish K.
    Rudolph, Carsten
    MOLECULAR THERAPY, 2019, 27 (04) : 794 - 802
  • [27] Delivery to mitochondria: a narrower approach for broader therapeutics
    Malhi, Sarandeep Singh
    Murthy, Rayasa S. Ramachandra
    EXPERT OPINION ON DRUG DELIVERY, 2012, 9 (08) : 909 - 935
  • [28] Dendrimers Show Promise for siRNA and microRNA Therapeutics
    Dzmitruk, Volha
    Apartsin, Evgeny
    Ihnatsyeu-Kachan, Aliaksei
    Abashkin, Viktar
    Shcharbin, Dzmitry
    Bryszewska, Maria
    PHARMACEUTICS, 2018, 10 (03)
  • [29] Lipid-Based DNA Therapeutics: Hallmarks of Non-Viral Gene Delivery
    Buck, Jonas
    Grossen, Philip
    Cullis, Pieter R.
    Huwyler, Jorg
    Witzigmann, Dominik
    ACS NANO, 2019, 13 (04) : 3754 - 3782
  • [30] In vivo and ex vivo gene therapy for neurodegenerative diseases: a promise for disease modification
    Ebrahimi, Pouya
    Davoudi, Elham
    Sadeghian, Razieh
    Zadeh, Amin Zaki
    Razmi, Emran
    Heidari, Reza
    Morowvat, Mohammad Hossein
    Sadeghian, Issa
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2024, 397 (10) : 7501 - 7530