On the existence of solutions to the generalized Marguerre-von Karman equations

被引:8
作者
Ciarlet, PG [1 ]
Gratie, L
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Liu Bie Ju Ctr Math Sci, Kowloon, Hong Kong, Peoples R China
关键词
nonlinear shallow shell theory; nonlinear partial differential equations;
D O I
10.1177/1081286505046480
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using techniques from asymptotic analysis, the second author has recently identified equations that generalize the classical Marguerre-von Karman equations for a nonlinearly elastic shallow shell by allowing more realistic boundary conditions, which may change their type along the lateral face of the shell. We first reduce these more general equations to a single "cubic" operator equation, whose sole unknown is the vertical displacement of the shell. This equation generalizes a cubic operator equation introduced by A S. Berger and P Fife for analyzing the von Karman equations for a nonlinearly elastic plate. We then establish the existence of a solution to this operator equation by means of a compactness method due to J. L. Lions.
引用
收藏
页码:83 / 100
页数:18
相关论文
共 26 条
[1]   Marguerre-von Karman equations in curvilinear coordinates [J].
Andreoiu-Banica, G .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (03) :319-322
[2]  
[Anonymous], 1997, STUD MATH APPL
[3]   VON KARMANS EQUATIONS AND BUCKLING OF A THIN ELASTIC PLATE 2 PLATE WITH GENERAL EDGE CONDITIONS [J].
BERGER, MS ;
FIFE, PC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1968, 21 (03) :227-&
[5]  
Ciarlet P.G., 1980, Lecture Notes in Mathematics, V826
[6]  
Ciarlet P.G., 1988, Mathematical Elasticity Volume I: Three-Dimensional Elasticity, V20
[7]   An existence theorem for generalized von Karman equations [J].
Ciarlet, PG ;
Gratie, L ;
Sabu, N .
JOURNAL OF ELASTICITY, 2001, 62 (03) :239-248
[8]   Generalized von Karman equations [J].
Ciarlet, PG ;
Gratie, L .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (03) :263-279
[9]  
CIARLET PG, 1980, ARCH RATION MECH AN, V73, P349, DOI 10.1007/BF00247674
[10]  
Ciarlet PG., 1986, COMPUTATIONAL MECHAN, V1, P177