Colloidal Antimony Sulfide Nanoparticles as a High-Performance Anode Material for Li-ion and Na-ion Batteries

被引:25
作者
Kravchyk, Kostiantyn, V [1 ,2 ]
Kovalenko, Maksym, V [1 ,2 ]
Bodnarchuk, Maryna, I [1 ]
机构
[1] Swiss Fed Labs Mat Sci & Technol, Empa, Lab Thin Films & Photovolta, Uberlandstr 129, CH-8600 Dubendorf, Switzerland
[2] Swiss Fed Inst Technol, Lab Inorgan Chem, Dept Chem & Appl Biosci, Vladimir Prelog Weg 1, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
HIGH-RATE CAPABILITY; SB2S3; NANORODS; ELECTROCHEMICAL PERFORMANCE; HYDROTHERMAL SYNTHESIS; LITHIUM; NANOCRYSTALS; CONVERSION; STABILITY; NANOCOMPOSITE; NANOSHEETS;
D O I
10.1038/s41598-020-59512-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To maximize the anodic charge storage capacity of Li-ion and Na-ion batteries (LIBs and SIBs, respectively), the conversion-alloying-type Sb2S3 anode has attracted considerable interest because of its merits of a high theoretical capacity of 946 mAh g(-1) and a suitable anodic lithiation/delithiation voltage window of 0.1-2V vs. Li+/Li. Recent advances in nanostructuring of the Sb2S3 anode provide an effective way of mitigating the challenges of structure conversion and volume expansion upon lithiation/sodiation that severely hinder the Sb2S3 cycling stability. In this context, we report uniformly sized colloidal Sb2S3 nanoparticles (NPs) as a model Sb2S3 anode material for LIBs and SIBs to investigate the effect of the primary particle size on the electrochemical performance of the Sb2S3 anode. We found that compared with microcrystalline Sb2S3, smaller ca. 20-25 nm and ca. 180-200 nm Sb2S3 NPs exhibit enhanced cycling stability as anode materials in both rechargeable LIBs and SIBs. Importantly, for the ca. 20-25 nm Sb2S3 NPs, a high initial Li-ion storage capacity of 742 mAh g(-1) was achieved at a current density of 2.4 A g(-1). At least 55% of this capacity was retained after 1200 cycles, which is among the most stable performance Sb2S3 anodes for LIBs.
引用
收藏
页数:8
相关论文
共 50 条
[21]   Fabrication of a Stable and Highly Effective Anode Material for Li-Ion/Na-Ion Batteries Utilizing ZIF-12 [J].
Bugday, Nesrin ;
Wang, Haoji ;
Hong, Ningyun ;
Zhang, Baichao ;
Deng, Wentao ;
Zou, Guoqiang ;
Hou, Hongshuai ;
Yasar, Sedat ;
Ji, Xiaobo .
SMALL, 2024, 20 (44)
[22]   Ab initio study of P-doped borocarbonitride nanosheet as anode material for Li-ion and Na-ion batteries [J].
Nazneen, Farzana ;
Tanwee, Nusrat Zahan ;
Shahed, Naafis Ahnaf ;
Khanom, Shamima ;
Hossain, Kamal ;
Khandaker, Jahirul Islam ;
Ahmed, Farid ;
Abul Hossain, Md. .
MATERIALS TODAY COMMUNICATIONS, 2020, 25
[23]   TiO2 encrusted MXene as a High-Performance anode material for Li-ion batteries [J].
Tariq, Hanan Abdurehman ;
Nisar, Umair ;
Abraham, Jeffin James ;
Ahmad, Zubair ;
AlQaradawi, Siham ;
Kahraman, Ramazan ;
Shakoor, R. A. .
APPLIED SURFACE SCIENCE, 2022, 583
[24]   High-performance silicon from quartz product waste as an anode material for Li-ion batteries [J].
Pan, Wenhao ;
Cai, Xiaolan ;
Yang, Changjiang ;
Zhou, Lei .
CERAMICS INTERNATIONAL, 2022, 48 (13) :19412-19423
[25]   In Situ Wrapping SiO with Carbon Nanotubes as Anode Material for High-Performance Li-Ion Batteries [J].
Li, Jianbin ;
Wang, Lei ;
Liu, Fangming ;
Liu, Wenjing ;
Luo, Caikun ;
Liao, Yingling ;
Li, Xuan ;
Qu, Meizhen ;
Wan, Qi ;
Peng, Gongchang .
CHEMISTRYSELECT, 2019, 4 (10) :2918-2925
[26]   Carbon-decorated flower-like ZnO as high-performance anode materials for Li-ion batteries [J].
Ding, Yanhuai ;
Sun, Jinlei ;
Liu, Xing .
IONICS, 2019, 25 (09) :4129-4136
[27]   Gamma titanium phosphate as an electrode material for Li-ion and Na-ion storage: performance and mechanism [J].
Xiang, Xinghua ;
Li, Xiaocheng ;
Chen, Kongyao ;
Tang, Yang ;
Wan, Min ;
Ding, Xuli ;
Xue, Lihong ;
Zhang, Wuxing ;
Huang, Yunhui .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (46) :18084-18090
[28]   Cathodically induced antimony for rechargeable Li-ion and Na-ion batteries: The influences of hexagonal and amorphous phase [J].
Yang, Yingchang ;
Yang, Xuming ;
Zhang, Yan ;
Hou, Hongshuai ;
Jing, Mingjun ;
Zhu, Yirong ;
Fang, Laibing ;
Chen, Qiyuan ;
Ji, Xiaobo .
JOURNAL OF POWER SOURCES, 2015, 282 :358-367
[29]   Lithium salt of biphenyl tetracarboxylate as an anode material for Li/Na-ion batteries [J].
Medabalmi, Veerababu ;
Wang, Guanxiong ;
Ramani, Vijay K. ;
Ramanujam, Kothandaraman .
APPLIED SURFACE SCIENCE, 2017, 418 :9-16
[30]   Construction of spherical ZnTiO3/MWCNTs composites as anode material for high-performance Li-ion batteries [J].
Han, Meng-Cheng ;
Zhang, Jun-Hong ;
Cui, Ping ;
Zhu, Yan-Rong ;
Yi, Ting-Feng .
SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2020, 25