within the last 30 years, a number of methods have been proposed such as boundary-based shape optimization, homogenization-based method, evolutionary structural optimization etc. Design optimization is used to produce a design that possesses some optimal character, such as minimum weight. However, these optimization capabilities are basically used to improve the design of structures or parts in the detailed design process. In this paper, topology optimization of scraper conveyer is based on homogenization method and carried out with MSC.Nastran program. On the basis of this theory of homogenization method, the design domain is assumed composing of infinitely periodic microstructures. Starting with a discussion on several of optimization methods and their merit and shortage, homogenization method is discussed completely. In the first phase of topology optimization, the model of scraper conveyer is analyzed with MSC.Nastran. The results shows that the maximal stress value in original design is much less than the yield stress value. Then the model is submitted to MSC.Nastran to access the topology optimization results. After topology optimization, the weight of scraper conveyer reduced 17.17% It is also found that the maximal stress value of optimized scraper conveyer doesn't still approaches the yield stress. Therefore this optimization makes material sufficient used, the weigh of scraper conveyer effectively lightened and the stress distribution is more reasonable. It is also found that optimization result is according to the theory, which is testified that topology optimization with MSC.Nastran can be applied in the engineering scope practically.