On the automorphism groups of Frobenius groups

被引:3
作者
Wang, Lei [1 ]
机构
[1] Yunnan Univ, Sch Math & Stat, Kunming 650091, Yunnan, Peoples R China
关键词
Automorphism group; Frobenius group; FAMILY; GRAPHS;
D O I
10.1080/00927872.2020.1788045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is one of a series of papers which aim toward determining the automorphism groups of Frobenius groups. This paper solves the problem in the case where the Frobenius kernels are elementary abelian and Frobenius complements are cyclic.
引用
收藏
页码:5330 / 5342
页数:13
相关论文
共 21 条
[1]  
[Anonymous], ABH MATH SEM U HAMBU
[2]  
Aschbacher M., 1993, FINITE GROUP THEORY
[3]   Normal edge-transitive Cayley graphs of Frobenius groups [J].
Corr, Brian P. ;
Praeger, Cheryl E. .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (03) :803-827
[4]   Nilpotent primitive linear groups over finite fields [J].
Detinko, AS ;
Flannery, DL .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (02) :497-505
[5]   On normal 2-geodesic transitive Cayley graphs [J].
Devillers, Alice ;
Jin, Wei ;
Li, Cai Heng ;
Praeger, Cheryl E. .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2014, 39 (04) :903-918
[6]  
Dixon J. D., 1996, GRAD TEXTS MATH, V163
[7]   On orbital regular graphs and frobenius graphs [J].
Fang, XG ;
Li, CH ;
Praeger, CE .
DISCRETE MATHEMATICS, 1998, 182 (1-3) :85-99
[8]  
Gorenstein D., 1968, FINITE GROUPS
[9]   FROBENIUS GROUPS AS MONODROMY GROUPS. [J].
Guralnick, Robert M. .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 85 (02) :191-196
[10]  
Huppert, 1967, ENDLICHE GRUPP