On the inductive McKay-Navarro condition for finite groups of Lie type in their defining characteristic

被引:2
作者
Johansson, Birte [1 ]
机构
[1] TU Kaiserslautern, FB Math, Postfach 3049, D-67653 Kaiserslautern, Germany
关键词
Groups of Lie type; Local -global conjectures; McKay conjecture; REE GROUPS; CONJECTURE;
D O I
10.1016/j.jalgebra.2022.06.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The McKay-Navarro conjecture is a refinement of the McKay conjecture that additionally takes the action of some Galois automorphisms into account. We verify the inductive McKay- Navarro condition in the defining characteristic for the finite groups of Lie type with exceptional graph automorphisms, the Suzuki and Ree groups, Bn(2) (n >= 2), and the groups of Lie type with non-generic Schur multiplier. This completes the verification of the inductive McKay-Navarro condition for the finite groups of Lie type in their defining characteristic.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:223 / 240
页数:18
相关论文
共 24 条
[1]  
Blackburn N., 1982, GRUNDLEHREN MATH WIS
[2]   On the inductive McKay condition in the defining characteristic [J].
Brunat, Olivier .
MATHEMATISCHE ZEITSCHRIFT, 2009, 263 (02) :411-424
[3]   Odd character degrees for Sp(2n, 2) [J].
Cabanes, Marc .
COMPTES RENDUS MATHEMATIQUE, 2011, 349 (11-12) :611-614
[4]  
Carter R. W., 1985, Finite groups of Lie type: conjugacy classes and complex characters
[5]  
DIGNE F, 1994, ANN SCI ECOLE NORM S, V27, P345
[6]   Shintani descent and restriction of scalars [J].
Digne, F .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 59 :867-880
[7]  
Digne F., 2020, Representations of Finite Groups of Lie Type
[8]   Dade's inductive conjecture for the ree groups of type G2 in the defining characteristic [J].
Eaton, CW .
JOURNAL OF ALGEBRA, 2000, 226 (01) :614-620
[9]  
Geck M., 2020, Cambridge Studies in Advanced Mathematics
[10]  
Gorenstein D., 1998, Mathematical Surveys and Monographs, V40