Multi-Scale Reconstrucion of Undersampled Spectral-Spatial OCT Data for Coronary Imaging Using Deep Learning

被引:14
作者
Li, Xueshen [1 ,2 ]
Cao, Shengting [1 ]
Liu, Hongshan [1 ,2 ]
Yao, Xinwen [3 ]
Brott, Brigitta C. [4 ]
Litovsky, Silvio H. [4 ]
Song, Xiaoyu [5 ]
Ling, Yuye [6 ]
Gan, Yu [1 ,2 ]
机构
[1] Univ Alabama Birmingham, Elect & Comp Engn Dept, Birmingham, AL 35294 USA
[2] Stevens Inst Technol, Biomed Engn Dept, Hoboken, NJ 07030 USA
[3] Nanyang Technol Univ, Inst Hlth Technol, Singapore, Singapore
[4] Univ Alabama Birmingham, Sch Med, Birmingham, AL USA
[5] Icahn Sch Med Mt Sinai, New York, NY 10029 USA
[6] Shanghai Jiao Tong Univ, John Hoperoft Ctr Comp Sci, Shanghai, Peoples R China
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Coronary imaging; deep learning; image reconstruction; optical coherence tomography; OPTICAL COHERENCE TOMOGRAPHY; IMAGES; NETWORK; SUPERRESOLUTION; INTERVENTION; ATHEROSCLEROSIS; ACQUISITION;
D O I
10.1109/TBME.2022.3175670
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Coronary artery disease (CAD) is a cardiovascular condition with high morbidity and mortality. Intravascular optical coherence tomography (IVOCT) has been considered as an optimal imagining system for the diagnosis and treatment of CAD. Constrained by Nyquist theorem, dense sampling in IVOCT attains high resolving power to delineate cellular structures/features. There is a trade-off between high spatial resolution and fast scanning rate for coronary imaging. In this paper, we propose a viable spectral-spatial acquisition method that down-scales the sampling process in both spectral and spatial domain while maintaining high quality in image reconstruction. The down-scaling schedule boosts data acquisition speed without any hardware modifications. Additionally, we propose a unified multi-scale reconstruction framework, namely Multiscale-Spectral-Spatial-Magnification Network (MSSMN), to resolve highly down-scaled (compressed) OCT images with flexible magnification factors. We incorporate the proposed methods into Spectral Domain OCT (SD-OCT) imaging of human coronary samples with clinical features such as stent and calcified lesions. Our experimental results demonstrate that spectral-spatial down-scaled data can be better reconstructed than data that are down-scaled solely in either spectral or spatial domain. Moreover, we observe better reconstruction performance using MSSMN than using existing reconstruction methods. Our acquisition method and multi-scale reconstruction framework, in combination, may allow faster SD-OCT inspection with high resolution during coronary intervention.
引用
收藏
页码:3667 / 3677
页数:11
相关论文
共 40 条
[21]   Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography [J].
Liu, Linbo ;
Gardecki, Joseph A. ;
Nadkarni, Seemantini K. ;
Toussaint, Jimmy D. ;
Yagi, Yukako ;
Bouma, Brett E. ;
Tearney, Guillermo J. .
NATURE MEDICINE, 2011, 17 (08) :1010-U132
[22]   Optical Coherence Tomography to Optimize Results of Percutaneous Coronary Intervention in Patients with Non-ST-Elevation Acute Coronary Syndrome Results of the Multicenter, Randomized DOCTORS Study (Does Optical Coherence Tomography Optimize Results of Stenting) [J].
Meneveau, Nicolas ;
Souteyrand, Geraud ;
Motreff, Pascal ;
Caussin, Christophe ;
Amabile, Nicolas ;
Ohlmann, Patrick ;
Morel, Olivier ;
Lefrancois, Yoann ;
Descotes-Genon, Vincent ;
Silvain, Johanne ;
Braik, Nassim ;
Chopard, Romain ;
Chatot, Marion ;
Ecarnot, Fiona ;
Tauzin, Helene ;
Van Belle, Eric ;
Belle, Loic ;
Schiele, Francois .
CIRCULATION, 2016, 134 (13) :906-+
[23]   More realistic low-resolution OCT image generation approach for training deep neural networks [J].
Pan, Hongming ;
Yang, Di ;
Yuan, Zhuoqun ;
Liang, Yanmei .
OSA CONTINUUM, 2020, 3 (11) :3197-3205
[24]   N2NSR-OCT: Simultaneous denoising and super-resolution in optical coherence tomography images using semisupervised deep learning [J].
Qiu, Bin ;
You, Yunfei ;
Huang, Zhiyu ;
Meng, Xiangxi ;
Jiang, Zhe ;
Zhou, Chuanqing ;
Liu, Gangjun ;
Yang, Kun ;
Ren, Qiushi ;
Lu, Yanye .
JOURNAL OF BIOPHOTONICS, 2021, 14 (01)
[25]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[26]   Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network [J].
Shi, Wenzhe ;
Caballero, Jose ;
Huszar, Ferenc ;
Totz, Johannes ;
Aitken, Andrew P. ;
Bishop, Rob ;
Rueckert, Daniel ;
Wang, Zehan .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1874-1883
[27]  
Tearney GJ, 2008, BIOL MED PHYS BIOMED, P1083, DOI 10.1007/978-3-540-77550-8_34
[28]   Consensus Standards for Acquisition, Measurement, and Reporting of Intravascular Optical Coherence Tomography Studies A Report From the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation [J].
Tearney, Guillermo J. ;
Regar, Evelyn ;
Akasaka, Takashi ;
Adriaenssens, Tom ;
Barlis, Peter ;
Bezerra, Hiram G. ;
Bouma, Brett ;
Bruining, Nico ;
Cho, Jin-man ;
Chowdhary, Saqib ;
Costa, Marco A. ;
de Silva, Ranil ;
Dijkstra, Jouke ;
Di Mario, Carlo ;
Dudeck, Darius ;
Falk, Erlin ;
Feldman, Marc D. ;
Fitzgerald, Peter ;
Garcia, Hector ;
Gonzalo, Nieves ;
Granada, Juan F. ;
Guagliumi, Giulio ;
Holm, Niels R. ;
Honda, Yasuhiro ;
Ikeno, Fumiaki ;
Kawasaki, Masanori ;
Kochman, Janusz ;
Koltowski, Lukasz ;
Kubo, Takashi ;
Kume, Teruyoshi ;
Kyono, Hiroyuki ;
Lam, Cheung Chi Simon ;
Lamouche, Guy ;
Lee, David P. ;
Leon, Martin B. ;
Maehara, Akiko ;
Manfrini, Olivia ;
Mintz, Gary S. ;
Mizuno, Kyiouchi ;
Morel, Marie-angele ;
Nadkarni, Seemantini ;
Okura, Hiroyuki ;
Otake, Hiromasa ;
Pietrasik, Arkadiusz ;
Prati, Francesco ;
Raeber, Lorenz ;
Radu, Maria D. ;
Rieber, Johannes ;
Riga, Maria ;
Rollins, Andrew .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2012, 59 (12) :1058-1072
[29]   ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks [J].
Wang, Xintao ;
Yu, Ke ;
Wu, Shixiang ;
Gu, Jinjin ;
Liu, Yihao ;
Dong, Chao ;
Qiao, Yu ;
Loy, Chen Change .
COMPUTER VISION - ECCV 2018 WORKSHOPS, PT V, 2019, 11133 :63-79
[30]   Image quality assessment: From error visibility to structural similarity [J].
Wang, Z ;
Bovik, AC ;
Sheikh, HR ;
Simoncelli, EP .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (04) :600-612