The potential of hyperpolarized 13C magnetic resonance spectroscopy to monitor the effect of combretastatin based vascular disrupting agents

被引:10
|
作者
Iversen, Ane B. [1 ]
Busk, Morten [1 ]
Bertelsen, Lotte B. [2 ]
Laustsen, Christoffer [2 ]
Munk, Ole L. [3 ]
Nielsen, Thomas [4 ]
Wittenborn, Thomas R. [1 ]
Bussink, Johan [5 ]
Lok, Jasper [5 ]
Stodkilde-Jorgensen, Hans [2 ]
Horsman, Michael R. [1 ]
机构
[1] Aarhus Univ Hosp, Dept Expt Clin Oncol, Noerrebrogade 44,Bldg 5, DK-8000 Aarhus, Denmark
[2] Aarhus Univ Hosp, MR Res Ctr, Aarhus, Denmark
[3] Aarhus Univ Hosp, PET Ctr, Aarhus, Denmark
[4] Aarhus Univ Hosp, Ctr Funct Integrat Neurosci, Aarhus, Denmark
[5] Radboud Univ Nijmegen, Med Ctr, Dept Radiat Oncol, Nijmegen, Netherlands
关键词
POSITRON-EMISSION-TOMOGRAPHY; A-4 DISODIUM PHOSPHATE; TUMOR; COMBINATION; RADIATION; CANCER; THERAPY; RATIO; PET;
D O I
10.1080/0284186X.2017.1351622
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Targeting tumor vasculature with vascular disrupting agents (VDAs) results in substantial cell death that precede tumor shrinkage. Here, we investigate the potential of hyperpolarized magnetic resonance spectroscopy (HPMRS) to monitor early metabolic changes associated with VDA treatment. Methods: Mice bearing C3H mammary carcinomas were treated with the VDAs combretastatin-A4-phosphate (CA4P) or the analog OXi4503, and HPMRS was performed following [1-C-13]pyruvate administration. Similarly, treated mice were positron emission tomography (PET) scanned following administration of the glucose analog FDG. Finally, metabolic imaging parameters were compared to tumor regrowth delay and measures of vascular damage, derived from dynamic contrast-agent enhanced magnetic resonance imaging (DCE-MRI) and histology. Results: VDA-treatment impaired tumor perfusion (histology and DCE-MRI), reduced FDG uptake, increased necrosis, and slowed tumor growth. HPMRS, revealed that the [1-C-13]pyruvate-to[ 1-C-13]lactate conversion remained unaltered, whereas [1-C-13]lactate-to-[C-13]bicarbonate (originating from respiratory CO2) ratios increased significantly following treatment. Conclusions: DCE-MRI and FDG-PET revealed loss of vessel functionality, impaired glucose delivery and reduced metabolic activity prior to cell death. [1-C-13]lactate-to-[C-13]bicarbonate ratios increased significantly during treatment, indicating a decline in respiratory activity driven by the onset of hypoxia. HPMRS is promising for early detection of metabolic stress inflicted by VDAs, which cannot easily be inferred based on blood flow measurements.
引用
收藏
页码:1626 / 1633
页数:8
相关论文
共 27 条
  • [1] Detection of Tumor Response to a Vascular Disrupting Agent by Hyperpolarized 13C Magnetic Resonance Spectroscopy
    Bohndiek, Sarah E.
    Kettunen, Mikko I.
    Hu, De-en
    Witney, Timothy H.
    Kennedy, Brett W. C.
    Gallagher, Ferdia A.
    Brindle, Kevin M.
    MOLECULAR CANCER THERAPEUTICS, 2010, 9 (12) : 3278 - 3288
  • [2] Hyperpolarized 13C Metabolic Magnetic Resonance Spectroscopy and Imaging
    Kubala, Eugen
    Munoz-Alvarez, Kim A.
    Topping, Geoffrey
    Hundshammer, Christian
    Feuerecker, Benedikt
    Gomez, Pedro A.
    Pariani, Giorgio
    Schilling, Franz
    Glaser, Steffen J.
    Schulte, Rolf F.
    Menzel, Marion I.
    Schwaiger, Markus
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2016, (118): : 1 - 16
  • [3] Imaging tumour cell metabolism using hyperpolarized 13C magnetic resonance spectroscopy
    Witney, Timothy H.
    Brindle, Kevin M.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2010, 38 : 1220 - 1224
  • [4] Tumor Imaging Using Hyperpolarized 13C Magnetic Resonance
    Brindle, Kevin M.
    Bohndiek, Sarah E.
    Gallagher, Ferdia A.
    Kettunen, Mikko I.
    MAGNETIC RESONANCE IN MEDICINE, 2011, 66 (02) : 505 - 519
  • [5] Detection of inflammatory cell function using 13C magnetic resonance spectroscopy of hyperpolarized [6-13C]-arginine
    Najac, Chloe
    Chaumeil, Myriam M.
    Kohanbash, Gary
    Guglielmetti, Caroline
    Gordon, Jeremy W.
    Okada, Hideho
    Ronen, Sabrina M.
    SCIENTIFIC REPORTS, 2016, 6
  • [6] Hyperpolarized 13C magnetic resonance metabolic imaging: application to brain tumors
    Park, Ilwoo
    Larson, Peder E. Z.
    Zierhut, Matthew L.
    Hu, Simon
    Bok, Robert
    Ozawa, Tomoko
    Kurhanewicz, John
    Vigneron, Daniel B.
    VandenBerg, Scott R.
    James, C. David
    Nelson, Sarah J.
    NEURO-ONCOLOGY, 2010, 12 (02) : 133 - 144
  • [7] Hyperpolarized 13C magnetic resonance imaging for noninvasive assessment of tissue inflammation
    Anderson, Stephanie
    Grist, James T.
    Lewis, Andrew
    Tyler, Damian J.
    NMR IN BIOMEDICINE, 2021, 34 (03)
  • [8] Detection of radiation-induced lung injury using hyperpolarized 13C magnetic resonance spectroscopy and imaging
    Thind, K.
    Chen, A.
    Friesen-Waldner, L.
    Ouriadov, A.
    Scholl, T. J.
    Fox, M.
    Wong, E.
    VanDyk, J.
    Hope, A.
    Santyr, G.
    MAGNETIC RESONANCE IN MEDICINE, 2013, 70 (03) : 601 - 609
  • [9] Dicarboxylic acids as pH sensors for hyperpolarized 13C magnetic resonance spectroscopic imaging
    Korenchan, D. E.
    Taglang, C.
    von Morze, C.
    Blecha, J. E.
    Gordon, J. W.
    Sriram, R.
    Larson, P. E. Z.
    Vigneron, D. B.
    VanBrocklin, H. F.
    Kurhanewicz, J.
    Wilson, D. M.
    Flavell, R. R.
    ANALYST, 2017, 142 (09) : 1429 - 1433
  • [10] Model Free Approach to Kinetic Analysis of Real-Time Hyperpolarized 13C Magnetic Resonance Spectroscopy Data
    Hill, Deborah K.
    Orton, Matthew R.
    Mariotti, Erika
    Boult, Jessica K. R.
    Panek, Rafal
    Jafar, Maysam
    Parkes, Harold G.
    Jamin, Yann
    Miniotis, Maria Falck
    Al-Saffar, Nada M. S.
    Beloueche-Babari, Mounia
    Robinson, Simon P.
    Leach, Martin O.
    Chung, Yuen-Li
    Eykyn, Thomas R.
    PLOS ONE, 2013, 8 (09):