Upwind WENO scheme for Shallow Water Equations in contravariant formulation
被引:18
作者:
Gallerano, F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma La Sapienza, Dipartimento Ingn Civile Edile & Ambientale, I-00184 Rome, ItalyUniv Roma La Sapienza, Dipartimento Ingn Civile Edile & Ambientale, I-00184 Rome, Italy
Gallerano, F.
[1
]
Cannata, G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma La Sapienza, Dipartimento Ingn Civile Edile & Ambientale, I-00184 Rome, ItalyUniv Roma La Sapienza, Dipartimento Ingn Civile Edile & Ambientale, I-00184 Rome, Italy
Cannata, G.
[1
]
Tamburrino, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma La Sapienza, Dipartimento Ingn Civile Edile & Ambientale, I-00184 Rome, ItalyUniv Roma La Sapienza, Dipartimento Ingn Civile Edile & Ambientale, I-00184 Rome, Italy
Tamburrino, M.
[1
]
机构:
[1] Univ Roma La Sapienza, Dipartimento Ingn Civile Edile & Ambientale, I-00184 Rome, Italy
An Upwind Weighted Essentially Non-Oscillatory scheme for the solution of the Shallow Water Equations on generalized curvilinear coordinate systems is proposed. The Shallow Water Equations are expressed in a contravariant formulation in which Christoffel symbols are avoided. The equations are solved by using a high-resolution finite-volume method incorporated with an exact Riemann solver. A procedure developed in order to correct errors related to the difficulties of numerically satisfying the metric identities on generalized boundary-conforming grids is presented; this procedure allows the numerical scheme to satisfy the freestream preservation property on highly-distorted grids. The proposed scheme ensures the satisfaction of the C-property. The model is verified against several benchmark tests, and the results are compared with theoretical and alternative numerical solutions. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 64 条
[1]
Aris R., 1989, Vectors, Tensors and the Basic Equations of Fluid Mechanics