The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties

被引:166
|
作者
Ou, Jian Zhen [1 ]
Balendhran, Sivacarendran [1 ]
Field, Matthew R. [2 ]
McCulloch, Dougal G. [2 ]
Zoolfakar, Ahmad Sabirin [1 ]
Rani, Rozina A. [1 ]
Zhuiykov, Serge [3 ]
O'Mullane, Anthony P. [2 ]
Kalantar-zadeh, Kourosh [1 ]
机构
[1] RMIT Univ, Sch Elect & Comp Engn, Melbourne, Vic, Australia
[2] RMIT Univ, Sch Appl Sci, Melbourne, Vic, Australia
[3] CSIRO, Mat Sci & Engn Div, Highett, Vic, Australia
关键词
CHEMICAL-VAPOR-DEPOSITION; MESOPOROUS TUNGSTEN-OXIDE; TIO2 NANOTUBE ARRAYS; THIN-FILMS; SMART WINDOWS; FABRICATION; BEHAVIOR; GROWTH;
D O I
10.1039/c2nr31203d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We demonstrate that a three dimensional (3D) crystalline tungsten trioxide (WO3) nanoporous network, directly grown on a transparent conductive oxide (TCO) substrate, is a suitable working electrode material for high performance electrochromic devices. This nanostructure, with achievable thicknesses of up to 2 mu m, is prepared at room temperature by the electrochemical anodization of a RF-sputtered tungsten film deposited on a fluoride doped tin oxide (FTO) conductive glass, under low applied anodic voltages and mild chemical dissolution conditions. For the crystalline nanoporous network with thicknesses ranging from 0.6 to 1 mu m, impressive coloration efficiencies of up to 141.5 cm(2) C-1 are achieved by applying a low coloration voltage of -0.25 V. It is also observed that there is no significant degradation of the electrochromic properties of the porous film after 2000 continuous coloration-bleaching cycles. The remarkable electrochromic characteristics of this crystalline and nanoporous WO3 are mainly ascribed to the combination of a large surface area, facilitating increased intercalation of protons, as well as excellent continuous and directional paths for charge transfer and proton migration in the highly crystalline material.
引用
收藏
页码:5980 / 5988
页数:9
相关论文
共 50 条
  • [31] Integration of sputtering and solvothermal techniques for the synthesis and assessment of WO3 nanostructure for enhanced electrochromic performance
    Kamath, Kavitha
    Kumar, Kilari Naveen
    Prabhu, Smitha G.
    Alagarasan, Devarajan
    Shetty, Hitha D.
    Manjunatha, K. B.
    IONICS, 2025, : 4747 - 4763
  • [32] Fabrication and Photocatalytic Activity of Nanoporous WO3 Film
    Zhang, Xuming
    Huo, Kaifu
    Hu, Liangsheng
    Chu, Paul K.
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2010, 2 (01) : 51 - 57
  • [33] Effect of Gd-doping on electrochromic properties of sputter deposited WO3 films
    Yin, Yi
    Lan, Changyong
    Hu, Shouming
    Li, Chun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 739 : 623 - 631
  • [34] Structural, optical and electrochromic properties of RF magnetron sputtered WO3 thin films
    Madhavi, V.
    Kondaiah, P.
    Hussain, O. M.
    Uthanna, S.
    PHYSICA B-CONDENSED MATTER, 2014, 454 : 141 - 147
  • [35] Effect of substrate pre-treatment on microstructure and enhanced electrochromic properties of WO3 nanorod arrays
    Man, Wenkuan
    Lu, Hui
    Ju, Liangchen
    Zheng, Feng
    Zhang, Mei
    Guo, Min
    RSC ADVANCES, 2015, 5 (128): : 106182 - 106190
  • [36] Post-annealing effect on the electrochromic properties of WO3 films
    Au, Benedict Wen-Cheun
    Tamang, Asman
    Knipp, Dietmar
    Chan, Kah-Yoong
    OPTICAL MATERIALS, 2020, 108
  • [37] STRUCTURE AND PROPERTIES OF WO3 THIN FILMS FOR ELECTROCHROMIC DEVICE APPLICATION
    Rao, M. C.
    JOURNAL OF NON-OXIDE GLASSES, 2013, 5 (01): : 1 - 8
  • [38] Enhanced electrochromic performance of highly ordered, macroporous WO3 arrays electrodeposited using polystyrene colloidal crystals as template
    Zhang, J.
    Tu, J. P.
    Cai, G. F.
    Du, G. H.
    Wang, X. L.
    Liu, P. C.
    ELECTROCHIMICA ACTA, 2013, 99 : 1 - 8
  • [39] Electrochromic properties of WO3 thin films: The role of film thickness
    Zhen, Yingpeng
    Jelle, Bjorn Petter
    Gao, Tao
    ANALYTICAL SCIENCE ADVANCES, 2020, 1 (02): : 124 - 131
  • [40] Hydrothermal synthesis of WO3 nanoflowers on etched ITO and their electrochromic properties
    Bhosale, Nilam Y.
    Mali, Sawanta S.
    Hong, Chang K.
    Kadam, Anamika V.
    ELECTROCHIMICA ACTA, 2017, 246 : 1112 - 1120