Pattern-integrated interference lithography instrumentation

被引:9
作者
Burrow, G. M. [1 ]
Leibovici, M. C. R. [1 ]
Kummer, J. W. [1 ]
Gaylord, T. K. [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
PHOTONIC CRYSTALS; FABRICATION; METAMATERIALS; CONTRAST;
D O I
10.1063/1.4729666
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Multi-beam interference (MBI) provides the ability to form a wide range of sub-micron periodic optical-intensity distributions with applications to a variety of areas, including photonic crystals (PCs), nanoelectronics, biomedical structures, optical trapping, metamaterials, and numerous subwavelength structures. Recently, pattern-integrated interference lithography (PIIL) was presented as a new lithographic method that integrates superposed pattern imaging with interference lithography in a single-exposure step. In the present work, the basic design and systematic implementation of a pattern-integrated interference exposure system (PIIES) is presented to realize PIIL by incorporating a projection imaging capability in a novel three-beam interference configuration. A fundamental optimization methodology is presented to model the system and predict MBI-patterning performance. To demonstrate the PIIL method, a prototype PIIES experimental configuration is presented, including detailed alignment techniques and experimental procedures. Examples of well-defined PC structures, fabricated with a PIIES prototype, are presented to demonstrate the potential of PIIL for fabricating dense integrated optical circuits, as well as numerous other subwavelength structures. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729666]
引用
收藏
页数:10
相关论文
共 33 条
[11]   Formation of a microfiber bundle by interference of three noncoplanar beams [J].
Cai, LZ ;
Yang, XL ;
Wang, YR .
OPTICS LETTERS, 2001, 26 (23) :1858-1860
[12]   Fabrication of photonic crystals for the visible spectrum by holographic lithography [J].
Campbell, M ;
Sharp, DN ;
Harrison, MT ;
Denning, RG ;
Turberfield, AJ .
NATURE, 2000, 404 (6773) :53-56
[13]   Interferometric optical tweezers [J].
Chiou, AE ;
Wang, W ;
Sonek, GJ ;
Hong, J ;
Berns, MW .
OPTICS COMMUNICATIONS, 1997, 133 (1-6) :7-10
[14]   Increasing lubricant film lifetime by grooving periodical patterns using laser interference metallurgy [J].
Duarte, Martin ;
Lasagni, Andres ;
Giovanelli, Romain ;
Narciso, Javier ;
Louis, Enrique ;
Muecklich, Frank .
ADVANCED ENGINEERING MATERIALS, 2008, 10 (06) :554-558
[15]   Large-area magnetic metamaterials via compact interference lithography [J].
Feth, Nils ;
Enkrich, Christian ;
Wegener, Martin ;
Linden, Stefan .
OPTICS EXPRESS, 2007, 15 (02) :501-507
[16]   Large-Scale Protein Arrays Generated with Interferometric Lithography for Spatial Control of Cell-Material Interactions [J].
Hedberg-Dirk, Elizabeth L. ;
Martinez, Ulises A. .
JOURNAL OF NANOMATERIALS, 2010, 2010
[17]   Static optical sorting in a laser interference field [J].
Jakl, Petr ;
Cizmar, Tomas ;
Sery, Mojmir ;
Zemanek, Pavel .
APPLIED PHYSICS LETTERS, 2008, 92 (16)
[18]   A route to three-dimensional structures in a microfluidic device: Stop-flow interference lithography [J].
Jang, Ji-Hyun ;
Dendukuri, Dhananjay ;
Hatton, T. Alan ;
Thomas, Edwin L. ;
Doyle, Patrick S. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (47) :9027-9031
[19]   Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance [J].
Liu, C. H. ;
Hong, M. H. ;
Cheung, H. W. ;
Zhang, F. ;
Huang, Z. Q. ;
Tan, L. S. ;
Hor, T. S. A. .
OPTICS EXPRESS, 2008, 16 (14) :10701-10709
[20]   Fabrication of patterned magnetic nanodots by laser interference lithography [J].
Murillo, R ;
van Wolferen, HA ;
Abelmann, L ;
Lodder, JC .
MICROELECTRONIC ENGINEERING, 2005, 78-79 :260-265