Plasma potential mapping of high power impulse magnetron sputtering discharges

被引:75
|
作者
Rauch, Albert [1 ]
Mendelsberg, Rueben J. [1 ]
Sanders, Jason M. [1 ]
Anders, Andre [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
关键词
EMISSIVE PROBE; DEPOSITION; LANGMUIR; SHEATH; FIELD; TIME;
D O I
10.1063/1.3700242
中图分类号
O59 [应用物理学];
学科分类号
摘要
Pulsed emissive probe techniques have been used to determine the plasma potential distribution of high power impulse magnetron sputtering (HiPIMS) discharges. An unbalanced magnetron with a niobium target in argon was investigated for a pulse length of 100 mu s at a pulse repetition rate of 100 Hz, giving a peak current of 170 A. The probe data were recorded with a time resolution of 20 ns and a spatial resolution of 1 mm. It is shown that the local plasma potential varies greatly in space and time. The lowest potential was found over the target's racetrack, gradually reaching anode potential (ground) several centimeters away from the target. The magnetic presheath exhibits a funnel-shaped plasma potential resulting in an electric field which accelerates ions toward the racetrack. In certain regions and times, the potential exhibits weak local maxima which allow for ion acceleration to the substrate. Knowledge of the local E and static B fields lets us derive the electrons' E x B drift velocity, which is about 10(5) m/s and shows structures in space and time. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3700242]
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Modeling of high power impulse magnetron sputtering discharges with graphite target
    Eliasson, H.
    Rudolph, M.
    Brenning, N.
    Hajihoseini, H.
    Zanaska, M.
    Adriaans, M. J.
    Raadu, M. A.
    Minea, T. M.
    Gudmundsson, J. T.
    Lundin, D.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2021, 30 (11)
  • [2] Compression and strong rarefaction in high power impulse magnetron sputtering discharges
    Horwat, David
    Anders, Andre
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (12)
  • [3] Direct current and high power impulse magnetron sputtering discharges with a positively biased anode
    Hippler, Rainer
    Cada, Martin
    Hubicka, Zdenek
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2021, 39 (04):
  • [4] Rarefaction windows in a high-power impulse magnetron sputtering plasma
    Palmucci, Maria
    Britun, Nikolay
    Konstantinidis, Stephanos
    Snyders, Rony
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (11)
  • [6] Velocity distribution of titanium neutrals in the target region of high power impulse magnetron sputtering discharges
    Held, J.
    Hecimovic, A.
    von Keudell, A.
    Schulz-von der Gathen, V
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2018, 27 (10)
  • [7] Influence of the magnetic field on the extension of the ionization region in high power impulse magnetron sputtering discharges
    Antunes, V. G.
    Rudolph, M.
    Kapran, A.
    Hajihoseini, H.
    Raadu, M. A.
    Brenning, N.
    Gudmundsson, J. T.
    Lundin, D.
    Minea, T.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2023, 32 (07)
  • [8] High power impulse magnetron sputtering of a zirconium target
    Babu, Swetha Suresh
    Fischer, Joel
    Barynova, Kateryna
    Rudolph, Martin
    Lundin, Daniel
    Gudmundsson, Jon Tomas
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2024, 42 (04):
  • [9] Metal filling by high power impulse magnetron sputtering
    Jablonka, Lukas
    Moskovkin, Pavel
    Zhang, Zhen
    Zhang, Shi-Li
    Lucas, Stephane
    Kubart, Tomas
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (36)
  • [10] High power impulse magnetron sputtering using a rotating cylindrical magnetron
    Leroy, W. P.
    Mahieu, S.
    Depla, D.
    Ehiasarian, A. P.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2010, 28 (01): : 108 - 111