Near real-time surveillance of the SARS-CoV-2 epidemic with incomplete data

被引:6
|
作者
De Salazar, Pablo M. [1 ]
Lu, Fred [2 ,3 ]
Hay, James A. [1 ]
Gomez-Barroso, Diana [4 ,5 ]
Fernandez-Navarro, Pablo [4 ,5 ]
Martinez, Elena, V [5 ,6 ]
Astray-Mochales, Jenaro [7 ]
Amillategui, Rocio [4 ]
Garcia-Fulgueiras, Ana [8 ,9 ]
Chirlaque, Maria D. [8 ,9 ]
Sanchez-Migallon, Alonso [8 ,9 ]
Larrauri, Amparo [4 ,5 ]
Sierra, Maria J. [6 ,10 ]
Lipsitch, Marc [1 ]
Simon, Fernando [5 ,6 ]
Santillana, Mauricio [1 ,2 ,3 ,11 ]
Hernan, Miguel A. [12 ,13 ]
机构
[1] Harvard TH Chan Sch Publ Hlth, Ctr Communicable Dis Dynam, Dept Epidemiol, Boston, MA 02115 USA
[2] Boston Childrens Hosp, Machine Intelligence Lab, Boston, MA USA
[3] Boston Childrens Hosp, Computat Hlth Informat Program, Boston, MA USA
[4] Carlos III Hlth Inst, Ctr Nacl Epidemiol, Madrid, Spain
[5] Consorcio Invest Biomed Red Epidemiol & Salud Pub, Madrid, Spain
[6] Minist Hlth, Ctr Coordinac Alertas & Emergencias Sanitarias, Madrid, Spain
[7] Madrid Gen Hlth Author, Directorate Gen Publ Hlth, Madrid, Spain
[8] Reg Hlth Council, Dept Epidemiol, IMIB Arrixaca, Murcia, Spain
[9] CIBER Epidemiol & Publ Hlth CIBERESP, Madrid, Spain
[10] Consorcio Invest Biomed Red Enfermedades Infeccio, Madrid, Spain
[11] Harvard Univ, Harvard Med Sch, Dept Pediat, Boston, MA USA
[12] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, CAUSALab, Boston, MA USA
[13] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
基金
美国安德鲁·梅隆基金会; 美国国家卫生研究院;
关键词
OUTBREAK DETECTION; REPORTING DELAYS; BACKCALCULATION; TRANSMISSION; TIMELINESS; DYNAMICS;
D O I
10.1371/journal.pcbi.1009964
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
When responding to infectious disease outbreaks, rapid and accurate estimation of the epidemic trajectory is critical. However, two common data collection problems affect the reliability of the epidemiological data in real time: missing information on the time of first symptoms, and retrospective revision of historical information, including right censoring. Here, we propose an approach to construct epidemic curves in near real time that addresses these two challenges by 1) imputation of dates of symptom onset for reported cases using a dynamically-estimated "backward" reporting delay conditional distribution, and 2) adjustment for right censoring using the NobBS software package to nowcast cases by date of symptom onset. This process allows us to obtain an approximation of the time-varying reproduction number (R-t) in real time. We apply this approach to characterize the early SARS-CoV-2 outbreak in two Spanish regions between March and April 2020. We evaluate how these real-time estimates compare with more complete epidemiological data that became available later. We explore the impact of the different assumptions on the estimates, and compare our estimates with those obtained from commonly used surveillance approaches. Our framework can help improve accuracy, quantify uncertainty, and evaluate frequently unstated assumptions when recovering the epidemic curves from limited data obtained from public health systems in other locations.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Real-time environmental surveillance of SARS-CoV-2 aerosols
    Joseph V. Puthussery
    Dishit P. Ghumra
    Kevin R. McBrearty
    Brookelyn M. Doherty
    Benjamin J. Sumlin
    Amirhossein Sarabandi
    Anushka Garg Mandal
    Nishit J. Shetty
    Woodrow D. Gardiner
    Jordan P. Magrecki
    David L. Brody
    Thomas J. Esparza
    Traci L. Bricker
    Adrianus C. M. Boon
    Carla M. Yuede
    John R. Cirrito
    Rajan K. Chakrabarty
    Nature Communications, 14
  • [2] A program for real-time surveillance of SARS-CoV-2 genetics
    Brochu, Hayden N.
    Song, Kuncheng
    Zhang, Qimin
    Zeng, Qiandong
    Shafi, Adib
    Robinson, Matthew
    Humphrey, Jake
    Croy, Bobbi
    Peavy, Lydia
    Perera, Minoli
    Parker, Scott
    Pruitt, John
    Munroe, Jason
    Ghatti, Rama
    Urban, Thomas J.
    Harris, Ayla B.
    Alfego, David
    Norvell, Brian
    Levandoski, Michael
    Krueger, Brian
    Williams, Jonathan D.
    Boles, Deborah
    Nye, Melinda B.
    Dale, Suzanne E.
    Sapeta, Michael
    Petropoulos, Christos J.
    Meltzer, Jonathan
    Eisenberg, Marcia
    Cohen, Oren
    Letovsky, Stanley
    Iyer, Lakshmanan K.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [3] Real-time environmental surveillance of SARS-CoV-2 aerosols
    Puthussery, Joseph V. V.
    Ghumra, Dishit P. P.
    McBrearty, Kevin R. R.
    Doherty, Brookelyn M. M.
    Sumlin, Benjamin J. J.
    Sarabandi, Amirhossein
    Mandal, Anushka Garg
    Shetty, Nishit J. J.
    Gardiner, Woodrow D. D.
    Magrecki, Jordan P. P.
    Brody, David L. L.
    Esparza, Thomas J. J.
    Bricker, Traci L. L.
    Boon, Adrianus C. M.
    Yuede, Carla M. M.
    Cirrito, John R. R.
    Chakrabarty, Rajan K. K.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [4] The next phase of SARS-CoV-2 surveillance: real-time molecular epidemiology
    Bas B. Oude Munnink
    Nathalie Worp
    David F. Nieuwenhuijse
    Reina S. Sikkema
    Bart Haagmans
    Ron A. M. Fouchier
    Marion Koopmans
    Nature Medicine, 2021, 27 : 1518 - 1524
  • [5] Real-Time Genomic Surveillance for SARS-CoV-2 Variants of Concern, Uruguay
    Rego, Natalia
    Costabile, Alicia
    Paz, Mercedes
    Salazar, Cecilia
    Perbolianachis, Paula
    Spangenberg, Lucia
    Ferres, Ignacio
    Arce, Rodrigo
    Fajardo, Alvaro
    Arleo, Mailen
    Possi, Tania
    Reyes, Natalia
    Noel Bentancor, Ma
    Lizasoain, Andres
    Jose Benitez, Maria
    Bortagaray, Viviana
    Moller, Ana
    Bello, Gonzalo
    Arantes, Ighor
    Brandes, Mariana
    Smircich, Pablo
    Chappos, Odhille
    Duquia, Melissa
    Gonzalez, Belen
    Griffero, Luciana
    Mendez, Mauricio
    Pia Techera, Ma
    Zanetti, Juan
    Rivera, Bernardina
    Maidana, Matias
    Alonso, Martina
    Alonso, Cecilia
    Medina, Julio
    Albornoz, Henry
    Colina, Rodney
    Noya, Veronica
    Iraola, Gregorio
    Fernandez-Calero, Tamara
    Moratorio, Gonzalo
    Moreno, Pilar
    EMERGING INFECTIOUS DISEASES, 2021, 27 (11) : 2957 - 2960
  • [6] The next phase of SARS-CoV-2 surveillance: real-time molecular epidemiology
    Oude Munnink, Bas B.
    Worp, Nathalie
    Nieuwenhuijse, David F.
    Sikkema, Reina S.
    Haagmans, Bart
    Fouchier, Ron A. M.
    Koopmans, Marion
    NATURE MEDICINE, 2021, 27 (09) : 1518 - 1524
  • [7] Real-time allelic assays of SARS-CoV-2 variants to enhance sewage surveillance
    Xu, Xiaoqing
    Deng, Yu
    Ding, Jiahui
    Zheng, Xiawan
    Li, Shuxian
    Liu, Lei
    Chui, Ho-kwong
    Poon, Leo L. M.
    Zhang, Tong
    WATER RESEARCH, 2022, 220
  • [8] The first 2 months of the SARS-CoV-2 epidemic in Yemen: Analysis of the surveillance data
    Al-Waleedi, Ali Ahmed
    Naiene, Jeremias D.
    Thabet, Ahmed A. K.
    Dandarawe, Adham
    Salem, Hanan
    Mohammed, Nagat
    Al Noban, Maysa
    Bin-Azoon, Nasreen Salem
    Shawqi, Ammar
    Rajamanar, Mohammed
    Al-Jariri, Riyadh
    Al Hyubaishi, Mansoor
    Khanbari, Lina
    Thabit, Najib
    Obaid, Basel
    Baaees, Manal
    Assaf, Denise
    Senga, Mikiko
    Bashir, Ismail Mahat
    Mahmoud, Nuha
    Cosico, Roy
    Smith, Philip
    Musani, Altaf
    PLOS ONE, 2020, 15 (10):
  • [9] Author Correction: The next phase of SARS-CoV-2 surveillance: real-time molecular epidemiology
    Bas B. Oude Munnink
    Nathalie Worp
    David F. Nieuwenhuijse
    Reina S. Sikkema
    Bart Haagmans
    Ron A. M. Fouchier
    Marion Koopmans
    Nature Medicine, 2021, 27 : 2048 - 2048
  • [10] A real-time competition between humans and SARS-CoV-2
    Ranganath, H.A.
    Current Science, 2023, 124 (01): : 10 - 12