DIRECTED POLYMERS AND THE QUANTUM TODA LATTICE

被引:122
作者
O'Connell, Neil [1 ]
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
关键词
Random matrices; Whittaker functions; SIMPLE EXCLUSION PROCESS; PITMANS 2M-X THEOREM; WHITTAKER FUNCTIONS; BROWNIAN MOTIONS; INITIAL CONDITION; RANDOM MATRICES; FREE-ENERGY; REPRESENTATION; EIGENFUNCTIONS; CHAIN;
D O I
10.1214/10-AOP632
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We characterize the law of the partition function of a Brownian directed polymer model in terms of a diffusion process associated with the quantum Toda lattice. The proof is via a multidimensional generalization of a theorem of Matsumoto and Yor concerning exponential functionals of Brownian motion. It is based on a mapping which can be regarded as a geometric variant of the RSK correspondence.
引用
收藏
页码:437 / 458
页数:22
相关论文
共 62 条
  • [1] Probability Distribution of the Free Energy of the Continuum Directed Random Polymer in 1+1 Dimensions
    Amir, Gideon
    Corwin, Ivan
    Quastel, Jeremy
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (04) : 466 - 537
  • [2] [Anonymous], 1982, Hiroshima Math. J.
  • [3] [Anonymous], 1990, FESTSCHRIFT HONOR I
  • [4] GUEs and queues
    Baryshnikov, Y
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2001, 119 (02) : 256 - 274
  • [5] Exponential functionals of Brownian motion and class-one Whittaker functions
    Baudoin, Fabrice
    O'Connell, Neil
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (04): : 1096 - 1120
  • [6] Berenstein A, 2000, GEOM FUNCT ANAL, P188
  • [7] Littelmann paths and Brownian paths
    Biane, P
    Bougerol, P
    O'Connell, N
    [J]. DUKE MATHEMATICAL JOURNAL, 2005, 130 (01) : 127 - 167
  • [8] Continuous crystal and Duistermaat-Heckman measure for Coxeter groups
    Biane, Philippe
    Bougerol, Philippe
    O'Connell, Neil
    [J]. ADVANCES IN MATHEMATICS, 2009, 221 (05) : 1522 - 1583
  • [9] Paths in Weyl chambers and random matrices
    Bougerol, P
    Jeulin, T
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2002, 124 (04) : 517 - 543
  • [10] BUMP D, 1984, LECT NOTES MATH, V1083, pR1