Selective detection of dopamine based on Cu2O@ Pt core-shell nanoparticles modified electrode in the presence of ascorbic acid and uric acid

被引:39
作者
Jin, Jiayi [1 ,2 ,3 ]
Mei, He [1 ,2 ,3 ]
Wu, Huimin [1 ,2 ,3 ]
Wang, Shengfu [1 ,2 ,3 ]
Xia, Qinghua [1 ,2 ,3 ]
Ding, Yu [4 ]
机构
[1] Hubei Univ, Hubei Collaborat Innovat Ctr Adv Organ Chem Mat, Wuhan 430062, Peoples R China
[2] Hubei Univ, Key Lab Synth & Applicat Organ Funct Mol, Minist Educ, Wuhan 430062, Peoples R China
[3] Hubei Univ, Coll Chem & Chem Engn, Wuhan 430062, Peoples R China
[4] Hubei Engn Univ, Coll Chem & Mat Sci, Xiaogan 432000, Peoples R China
基金
中国国家自然科学基金;
关键词
Cu2O@Pt core-shell nanoparticles; Non-enzymatic sensor; Dopamine; Ascorbic acid; Uric acid; OXYGEN REDUCTION REACTION; GLASSY-CARBON ELECTRODE; FILM-MODIFIED ELECTRODE; REDUCED GRAPHENE OXIDE; AU-NANOCLUSTERS; COMPOSITE FILM; FUEL-CELLS; SENSOR; CU; NANOTUBES;
D O I
10.1016/j.jallcom.2016.07.322
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Cu2O@Pt nanoparticles were prepared by a two-step method, using Vulcan XC-72 carbon as support (donated as Cu2O@Pt/C). Transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy were used to characterize the resulting Cu2O@Pt core-shell nanoparticles. The chemically modified electrode based on Cu2O@Pt/C nanocomposites was employed to eliminate the interference from ascorbic acid and uric acid for the sensitive and selective determination of dopamine. The electrochemical results indicate that the Cu2O@Pt/C nanocomposites show better electrocatalytic activity for the oxidation of dopamine than Pt/C nanocomposites with a linear range from 10 nM to 1027.16 mu M, a detection limit of 3 nM (S/N = 3) and sensitivity of 638.0 mu A mM(-1) cm(-2). Moreover, the sensor exhibits excellent long-time stability, good reproducibility and can be applied for practical application. (C) 2016 Elsevier B. V. All rights reserved.
引用
收藏
页码:174 / 181
页数:8
相关论文
共 44 条
[1]   Simultaneous determination of ascorbic acid, dopamine, uric acid and folic acid based on activated graphene/MWCNT nanocomposite loaded Au nanoclusters [J].
Abdelwahab, Adel A. ;
Shim, Yoon-Bo .
SENSORS AND ACTUATORS B-CHEMICAL, 2015, 221 :659-665
[2]   PROBING BRAIN CHEMISTRY WITH ELECTROANALYTICAL TECHNIQUES [J].
ADAMS, RN .
ANALYTICAL CHEMISTRY, 1976, 48 (14) :1126-&
[3]   WO3 nanoparticles based direct electrochemical dopamine sensor in the presence of ascorbic acid [J].
Anithaa, A. C. ;
Lavanya, N. ;
Asokan, K. ;
Sekar, C. .
ELECTROCHIMICA ACTA, 2015, 167 :294-302
[4]   Effect of the spectral properties of TiO2, Cu, TiO2/Cu sputtered films on the bacterial inactivation under low intensity actinic light [J].
Baghriche, O. ;
Rtimi, S. ;
Pulgarin, C. ;
Sanjines, R. ;
Kiwi, J. .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2013, 251 :50-56
[5]   A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: Application to the secretion of bovine chromaffin cell cultures [J].
Carrera, Victoria ;
Sabater, Esther ;
Vilanova, Eugenio ;
Sogorb, Miguel A. .
JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 2007, 847 (02) :88-94
[6]   Nonenzymatic glucose sensor based on flower-shaped Au@Pd core-shell nanoparticles-ionic liquids composite film modified glassy carbon electrodes [J].
Chen, Xianlan ;
Pan, Hiabo ;
Liu, Hongfang ;
Du, Min .
ELECTROCHIMICA ACTA, 2010, 56 (02) :636-643
[7]   Designed Synthesis of Well-Defined Pd@Pt Core-Shell Nanoparticles with Controlled Shell Thickness as Efficient Oxygen Reduction Electrocatalysts [J].
Choi, Ran ;
Choi, Sang-Il ;
Choi, Chang Hyuck ;
Nam, Ki Min ;
Woo, Seong Ihl ;
Park, Joon T. ;
Han, Sang Woo .
CHEMISTRY-A EUROPEAN JOURNAL, 2013, 19 (25) :8190-8198
[8]   Tuning the Performance of Low-Pt Polymer Electrolyte Membrane Fuel Cell Electrodes Derived from Fe2O3@Pt/C Core-Shell Catalyst Prepared by an in Situ Anchoring Strategy [J].
Dhavale, Vishal M. ;
Kurungot, Sreekumar .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (13) :7318-7326
[9]   2,4,6-triphenylpyrylium ion encapsulated into zeolite Y as a selective electrode for the electrochemical determination of dopamine in the presence of ascorbic acid [J].
Doménech, A ;
García, H ;
Doménech-Carbó, MT ;
Galletero, MS .
ANALYTICAL CHEMISTRY, 2002, 74 (03) :562-569
[10]   Anodic behavior of carbon supported Cu@Ag core-shell nanocatalysts in direct borohydride fuel cells [J].
Duan, Donghong ;
Liu, Huihong ;
You, Xiu ;
Wei, Huikai ;
Liu, Shibin .
JOURNAL OF POWER SOURCES, 2015, 293 :292-300