A new property of the Lovasz number and duality relations between graph parameters

被引:8
作者
Acin, Antonio [1 ,2 ]
Duan, Runyao [3 ,4 ]
Roberson, David E. [5 ]
Belen Sainz, Ana [2 ,6 ]
Winter, Andreas [1 ,7 ]
机构
[1] ICREA, Pg Lluis Co 23, Barcelona 08010, Spain
[2] Barcelona Inst Sci & Technol, ICED Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
[3] Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Computat & Intelligent Syst QCIS, Sydney, NSW 2007, Australia
[4] Tsinghua Univ, Dept Comp Sci & Technol, Tsinghua Natl Lab Informat Sci & Technol, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China
[5] UCL, Dept Comp Sci, Gower St, London WC1E 6BT, England
[6] Univ Bristol, HH Wills Phys Lab, Sch Phys, Bristol BS8 1TL, Avon, England
[7] Univ Autonoma Barcelona, Fis Teor Informacio & Fenomens Quant, Bellaterra 08193, Barcelona, Spain
基金
澳大利亚研究理事会; 欧洲研究理事会; 中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Graph; Lovasz number; Independence number; Chromatic number; Fractional packing number; SHANNON CAPACITY;
D O I
10.1016/j.dam.2016.04.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that for any graph G, by considering "activation" through the strong product with another graph H, the relation alpha(G) <= upsilon(G) between the independence number and the Lovasz number of G can be made arbitrarily tight: Precisely, the inequality alpha(G boxed times H) <= upsilon(G boxed times H) = upsilon(G) upsilon(H) becomes asymptotically an equality for a suitable sequence of ancillary graphs H. This motivates us to look for other products of graph parameters of G and H on the right hand side of the above relation. For instance, a result of Rosenfeld and Hales states that alpha(G boxed times H) <= alpha*(G)alpha(H), with the fractional packing number alpha*(G), and for every G there exists H that makes the above an equality; conversely, for every graph H there is a G that attains equality. These findings constitute some sort of duality of graph parameters, mediated through the independence number, under which alpha and alpha* are dual to each other, and the Lovasz number upsilon is self-dual. We also show duality of Schrijver's and Szegedy's variants upsilon(-) and upsilon(+) of the Lovasz number, and explore analogous notions for the chromatic number under strong and disjunctive graph products. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:489 / 501
页数:13
相关论文
共 27 条
  • [1] A Combinatorial Approach to Nonlocality and Contextuality
    Acin, Antonio
    Fritz, Tobias
    Leverrier, Anthony
    Sainz, Belen
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 334 (02) : 533 - 628
  • [2] CHANNELS WITH ARBITRARILY VARYING CHANNEL PROBABILITY FUNCTIONS IN PRESENCE OF NOISELESS FEEDBACK
    AHLSWEDE, R
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1973, 25 (03): : 239 - 252
  • [3] [Anonymous], 1985, Matrix Analysis
  • [4] [Anonymous], 2013, THESIS
  • [5] [Anonymous], 1985, Graphs and Hypergraphs
  • [6] Entanglement-assisted zero-error capacity is upper-bounded by the Lovasz theta function
    Beigi, Salman
    [J]. PHYSICAL REVIEW A, 2010, 82 (01):
  • [7] Bounds on Entanglement-Assisted Source-Channel Coding via the Lovasz ν Number and Its Variants
    Cubitt, Toby
    Mancinska, Laura
    Roberson, David E.
    Severini, Simone
    Stahlke, Dan
    Winter, Andreas
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (11) : 7330 - 7344
  • [8] Zero-Error Channel Capacity and Simulation Assisted by Non-Local Correlations
    Cubitt, Toby S.
    Leung, Debbie
    Matthews, William
    Winter, Andreas
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (08) : 5509 - 5523
  • [9] A new notation for quantum mechanics
    Dirac, PAM
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1939, 35 : 416 - 418
  • [10] On Zero-Error Communication via Quantum Channels in the Presence of Noiseless Feedback
    Duan, Runyao
    Severini, Simone
    Winter, Andreas
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (09) : 5260 - 5277