Engineering ferroelectric instability to achieve ultralow thermal conductivity and high thermoelectric performance in Sn1-xGexTe

被引:176
|
作者
Banik, Ananya [1 ]
Ghosh, Tanmoy [1 ]
Arora, Raagya [2 ]
Dutta, Moinak [1 ]
Pandey, Juhi [3 ]
Acharya, Somnath [3 ]
Soni, Ajay [3 ]
Waghmare, Umesh V. [2 ,4 ]
Biswas, Kanishka [1 ,4 ]
机构
[1] JNCASR, New Chem Unit, Jakkur PO, Bangalore 560064, Karnataka, India
[2] JNCASR, Theoret Sci Unit, Jakkur PO, Bangalore 560064, Karnataka, India
[3] Indian Inst Technol Mandi, Sch Basic Sci, Mandi 175005, Himachal Prades, India
[4] JNCASR, Sch Adv Mat, Jakkur PO, Bangalore 560064, Karnataka, India
关键词
SOFT TO-PHONON; RAMAN-SCATTERING; PHASE-TRANSITION; SNTE; FIGURE; MERIT; STABILITY; ORIGIN; INDIUM; LEAD;
D O I
10.1039/c8ee03162b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High thermoelectric performance of a crystalline solid requires it to have low thermal conductivity which is one of the utmost material challenges. Herein, we demonstrate how the local structural distortions and the associated ferroelectric lattice instability induced soft polar phonons effectively scatter the heat carrying acoustic phonons and help achieve ultralow lattice thermal conductivity in SnTe by engineering the instability near room temperature via Ge (x = 0-30 mol%) alloying. While Sn1-xGexTe possesses a global cubic structure above room temperature (x < 0.5), by analysing synchrotron X-ray pair distribution functions (PDFs) we showed that local rhombohedral distortion exists which is sustained up to the studied maximum temperature (approximate to 600 K) above the ferroelectric transition (T-C = 290 K). We showed that the local rhombohedral distortions in global cubic Sn1-xGexTe are predominantly associated with local Ge off-centering which forms a short-range chain-like structure and scatters acoustic phonons, resulting in an ultralow lattice thermal conductivity of approximate to 0.67 W m(-1) K-1. In addition, Sb doping in Sn1-xGexTe enhances the Seebeck coefficient due to p-type carrier optimization and valence band convergence, which leads to a synergistic boost in the thermoelectric figure of merit, zT, to approximate to 1.6 at 721 K. The concept of engineering ferroelectric instability to achieve ultralow thermal conductivity is applicable to other crystalline solids, which opens up a general opportunity to enhance the thermoelectric performance.
引用
收藏
页码:589 / 595
页数:7
相关论文
共 50 条
  • [41] Ultralow thermal conductivity and high thermoelectric performance induced by multiscale lattice defects in Cu-doped BST alloys
    Liu, Yaohui
    Tang, Yu
    Tao, Yonggui
    Zhang, Ying
    Shen, Lanxian
    Ge, Wen
    Deng, Shukang
    CRYSTENGCOMM, 2023, 26 (01) : 100 - 109
  • [42] Improved Solubility in Metavalently Bonded Solid Leads to Band Alignment, Ultralow Thermal Conductivity, and High Thermoelectric Performance in SnTe
    Liu, Yuqi
    Zhang, Xuemei
    Nan, Pengfei
    Zou, Bo
    Zhang, Qingtang
    Hou, Yunxiang
    Li, Shuang
    Gong, Yaru
    Liu, Qingfeng
    Ge, Binghui
    Cojocaru-Miredin, Oana
    Yu, Yuan
    Zhang, Yongsheng
    Chen, Guang
    Wuttig, Matthias
    Tang, Guodong
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (47)
  • [43] Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in SnTe by Alloying with MnSb2Se4
    Peng, Panpan
    Wang, Chao
    Cui, Shengqiang
    Wang, Chunhui
    Chen, Jing
    Hao, Min
    Huang, Xudong
    Wang, Xinxin
    Wang, Yajing
    Cheng, Zhenxiang
    Wang, Jianli
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (38) : 45016 - 45025
  • [44] Ultralow Thermal Conductivity, Enhanced Mechanical Stability, and High Thermoelectric Performance in (GeTe)1-2x(SnSe)x(SnS)x
    Acharyya, Paribesh
    Roychowdhury, Subhajit
    Samanta, Manisha
    Biswas, Kanishka
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (48) : 20502 - 20508
  • [45] Monolayer Ag2S: Ultralow Lattice Thermal Conductivity and Excellent Thermoelectric Performance
    Sharma, Sitansh
    Shafique, Aamir
    Schwingenschlogl, Udo
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (10) : 10147 - 10153
  • [46] Thermoelectric performance of conducting aerogels based on carbon nanotube/silver nanocomposites with ultralow thermal conductivity
    Sun, Xijing
    Zhao, Jinghong
    Zhao, Lijuan
    Wu, Jinrong
    Li, Quan
    RSC ADVANCES, 2016, 6 (111) : 109878 - 109884
  • [47] Extraordinary Thermoelectric Performance Realized in Hierarchically Structured AgSbSe2 with Ultralow Thermal Conductivity
    Gao, Weihong
    Wang, Zhenyou
    Huang, Jin
    Liu, Zihang
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (22) : 18685 - 18692
  • [48] Ultralow lattice thermal conductivity and improved thermoelectric performance in a Hf-free half-Heusler compound modulated by entropy engineering
    Zhang, Xiaoling
    Huang, Ming
    Li, Hongjun
    Chen, Jiaxin
    Xu, Pengfei
    Xu, Biao
    Wang, Yifeng
    Tang, Guodong
    Yang, Sen
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (15) : 8150 - 8161
  • [49] Large effective mass and ultralow thermal conductivity lead to high thermoelectric performance in the high-entropy semiconductor MnGeAgBiTe4
    Tang, Yuxia
    Shu, Wenjie
    Su, Bingwen
    Hong, Aijun
    Zhai, Wenjing
    Li, Juan
    Zhou, Guanzhong
    Lin, Lin
    Zhou, Xiaohui
    Yan, Zhibo
    Zhang, Qian
    Liu, Jun-Ming
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (09) : 5464 - 5473
  • [50] Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in Two-Dimensional Thallium Selenide
    Majumdar, Arnab
    Chowdhury, Suman
    Ahuja, Rajeev
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (09) : 9315 - 9325