A New Analysis Tool for Continuous Glucose Monitor Data

被引:11
作者
Olawsky, Evan [1 ]
Zhang, Yuan [1 ]
Eberly, Lynn E. [1 ]
Helgeson, Erika S. [1 ]
Chow, Lisa S. [2 ]
机构
[1] Univ Minnesota, Sch Publ Hlth, Div Biostat, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Dept Med, Div Diabet Endocrinol & Metab, MMC 101,420 Delaware St SE, Minneapolis, MN 55455 USA
基金
美国国家卫生研究院;
关键词
continuous glucose monitoring; glycemic variability; R; GLYCEMIC VARIABILITY; QUALITY; HYPOGLYCEMIA; INDEXES;
D O I
10.1177/19322968211028909
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: With the development of continuous glucose monitoring systems (CGMS), detailed glycemic data are now available for analysis. Yet analysis of this data-rich information can be formidable. The power of CGMS-derived data lies in its characterization of glycemic variability. In contrast, many standard glycemic measures like hemoglobin A1c (HbA1c) and self-monitored blood glucose inadequately describe glycemic variability and run the risk of bias toward overreporting hyperglycemia. Methods that adjust for this bias are often overlooked in clinical research due to difficulty of computation and lack of accessible analysis tools. Methods: In response, we have developed a new R package rGV, which calculates a suite of 16 glycemic variability metrics when provided a single individual's CGM data. rGV is versatile and robust; it is capable of handling data of many formats from many sensor types. We also created a companion R Shiny web app that provides these glycemic variability analysis tools without prior knowledge of R coding. We analyzed the statistical reliability of all the glycemic variability metrics included in rGV and illustrate the clinical utility of rGV by analyzing CGM data from three studies. Results: In subjects without diabetes, greater glycemic variability was associated with higher HbA1c values. In patients with type 2 diabetes mellitus (T2DM), we found that high glucose is the primary driver of glycemic variability. In patients with type 1 diabetes (T1DM), we found that naltrexone use may potentially reduce glycemic variability. Conclusions: We present a new R package and accompanying web app to facilitate quick and easy computation of a suite of glycemic variability metrics.
引用
收藏
页码:1496 / 1504
页数:9
相关论文
共 42 条
[2]   Calculating the Mean Amplitude of Glycemic Excursion from Continuous Glucose Monitoring Data: An Automated Algorithm [J].
Baghurst, Peter A. .
DIABETES TECHNOLOGY & THERAPEUTICS, 2011, 13 (03) :296-302
[3]   Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range [J].
Battelino, Tadej ;
Danne, Thomas ;
Bergenstal, Richard M. ;
Amiel, Stephanie A. ;
Beck, Roy ;
Biester, Torben ;
Bosi, Emanuele ;
Buckingham, Bruce A. ;
Cefalu, William T. ;
Close, Kelly L. ;
Cobelli, Claudio ;
Dassau, Eyal ;
DeVries, J. Hans ;
Donaghue, Kim C. ;
Dovc, Klemen ;
Doyle, Francis J. ;
Garg, Satish ;
Grunberger, George ;
Heller, Simon ;
Heinemann, Lutz ;
Hirsch, Irl B. ;
Hovorka, Roman ;
Jia, Weiping ;
Kordonouri, Olga ;
Kovatchev, Boris ;
Kowalski, Aaron ;
Laffel, Lori ;
Levine, Brian ;
Mayorov, Alexander ;
Mathieu, Chantal ;
Murphy, Helen R. ;
Nimri, Revital ;
Norgaard, Kirsten ;
Parkin, Christopher G. ;
Renard, Eric ;
Rodbard, David ;
Saboo, Banshi ;
Schatz, Desmond ;
Stoner, Keaton ;
Urakami, Tatsuiko ;
Weinzimer, Stuart A. ;
Phillip, Moshe .
DIABETES CARE, 2019, 42 (08) :1593-1603
[4]   Glucose Management Indicator (GMI): A New Term for Estimating A1C From Continuous Glucose Monitoring [J].
Bergenstal, Richard M. ;
Beck, Roy W. ;
Close, Kelly L. ;
Grunberger, George ;
Sacks, David B. ;
Kowalski, Aaron ;
Brown, Adam S. ;
Heinemann, Lutz ;
Aleppo, Grazia ;
Ryan, Donna B. ;
Riddlesworth, Tonya D. ;
Cefalu, William T. .
DIABETES CARE, 2018, 41 (11) :2275-2280
[5]   Interpreting blood GLUcose data with R package iglu [J].
Broll, Steven ;
Urbanek, Jacek ;
Buchanan, David ;
Chun, Elizabeth ;
Muschelli, John ;
Punjabi, Naresh M. ;
Gaynanova, Irina .
PLOS ONE, 2021, 16 (04)
[6]   Beyond HbA1c: using continuous glucose monitoring metrics to enhance interpretation of treatment effect and improve clinical decision-making [J].
Brown, S. A. ;
Basu, A. ;
Kovatchev, B. P. .
DIABETIC MEDICINE, 2019, 36 (06) :679-687
[7]  
Chow LS, 2020, OBESITY, V28, P860, DOI [10.1002/oby.22756, 10.1002/oby.22785]
[8]   Development of a model to predict 5-year risk of severe hypoglycemia in patients with type 2 diabetes [J].
Chow, Lisa S. ;
Zmora, Rachel ;
Ma, Sisi ;
Seaquist, Elizabeth R. ;
Schreiner, Pamela J. .
BMJ OPEN DIABETES RESEARCH & CARE, 2018, 6 (01)
[9]   Mechanisms of hypoglycemia-associated autonomic failure and its component syndromes in diabetes [J].
Cryer, PE .
DIABETES, 2005, 54 (12) :3592-3601
[10]  
Dungan K., 2018, ENDOTEXT