Error estimates for semidiscrete finite element approximations of linear and semilinear parabolic equations under minimal regularity assumptions

被引:60
作者
Chrysafinos, K [1 ]
Hou, LS [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
关键词
parabolic equations; finite element methods; semidiscrete error estimates; boundary value problems;
D O I
10.1137/S0036142900377991
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Semidiscrete finite element error estimates for linear parabolic equations are derived under minimal regularity with the help of L-2 projectors. Then, analogous minimal regularity semidiscrete error estimates for semilinear parabolic equations are derived.
引用
收藏
页码:282 / 306
页数:25
相关论文
共 44 条
[11]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[12]   THE STABILITY IN LP AND W-P-1 OF THE L2-PROJECTION ONTO FINITE-ELEMENT FUNCTION-SPACES [J].
CROUZEIX, M ;
THOMEE, V .
MATHEMATICS OF COMPUTATION, 1987, 48 (178) :521-532
[13]  
CROUZEIX M, 1994, MATH COMPUT, V63, P121, DOI 10.1090/S0025-5718-1994-1242058-1
[14]  
CROUZEIX M, 1989, MATH COMPUT, V53, P25, DOI 10.1090/S0025-5718-1989-0970700-7
[16]  
DOBROWOLSKI M, 1978, RAIRO-ANAL NUMER-NUM, V12, P247
[17]   GALERKIN METHODS FOR PARABOLIC EQUATIONS [J].
DOUGLAS, J ;
DUPONT, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (04) :575-&
[18]  
DOUGLAS J, 1974, LECT NOTES COMPUT SC, V10, P288
[19]   TIME DISCRETIZATION OF PARABOLIC PROBLEMS BY THE DISCONTINUOUS GALERKIN METHOD [J].
ERIKSSON, K ;
JOHNSON, C ;
THOMEE, V .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (04) :611-643
[20]  
Evans L.C., 1998, PARTIAL DIFFERENTIAL