Error estimates for semidiscrete finite element approximations of linear and semilinear parabolic equations under minimal regularity assumptions

被引:60
作者
Chrysafinos, K [1 ]
Hou, LS [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
关键词
parabolic equations; finite element methods; semidiscrete error estimates; boundary value problems;
D O I
10.1137/S0036142900377991
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Semidiscrete finite element error estimates for linear parabolic equations are derived under minimal regularity with the help of L-2 projectors. Then, analogous minimal regularity semidiscrete error estimates for semilinear parabolic equations are derived.
引用
收藏
页码:282 / 306
页数:25
相关论文
共 44 条
[1]  
Adams R. A., 1975, SOBOLEV SPACES
[2]  
[Anonymous], 1990, NUMERICAL APPROXIMAT
[3]  
[Anonymous], 1972, MATH FDN FINITE ELEM
[4]  
Baiocchi C., 1983, Calcolo, V20, P143, DOI 10.1007/BF02575590
[5]  
BAKER GA, 1977, MATH COMPUT, V31, P818, DOI 10.1090/S0025-5718-1977-0448947-X
[6]  
Bramble J., 1974, ANN MAT PUR APPL, V101, P115, DOI DOI 10.1007/BF02417101
[7]   SOME CONVERGENCE ESTIMATES FOR SEMI-DISCRETE GALERKIN TYPE APPROXIMATIONS FOR PARABOLIC EQUATIONS [J].
BRAMBLE, JH ;
SCHATZ, AH ;
THOMEE, V ;
WAHLBIN, LB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (02) :218-241
[8]   EFFICIENT HIGHER-ORDER SINGLE STEP METHODS FOR PARABOLIC PROBLEMS .1. [J].
BRAMBLE, JH ;
SAMMON, PH .
MATHEMATICS OF COMPUTATION, 1980, 35 (151) :655-677
[9]   FINITE DIMENSIONAL APPROXIMATION OF NON-LINEAR PROBLEMS .1. BRANCHES OF NONSINGULAR SOLUTIONS [J].
BREZZI, F ;
RAPPAZ, J ;
RAVIART, PA .
NUMERISCHE MATHEMATIK, 1980, 36 (01) :1-25
[10]  
CHEN H, 1993, THESIS U HEIDELBERG