Advanced forms of functional a posteriori error estimates for elliptic problems

被引:1
|
作者
Repin, S. [1 ]
机构
[1] VA Steklov Math Inst, St Petersburg 191011, Russia
关键词
D O I
10.1515/RJNAMM.2008.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Functional a posteriori estimates have been derived for elliptic and linear parabolic problems in [12-15] and some other publications. They provide computable upper bounds of the difference between the exact solution u and any approximation v lying in the admissible (energy) class. This paper is concerned with advanced forms of these estimates, which are discussed within the paradigm of the reaction-diffusion problem. In the first part of the paper, we derive guaranteed and computable upper bounds for problems which admit the decomposition of the domain into a set of simple (e.g., simplicial or polyhedral) subdomains. For this case an upper bound which involves constants in the Poincare inequality for the corresponding subdomains is obtained. Estimates of this type can be helpful if computations are performed by the domain decomposition method. The second part of the paper is devoted to the derivation of two-sided error bounds in terms of weighted norms. Our analysis shows that the approach based on certain transformations of the basic integral identify earlier developed for energy error norms (see [13, 14]) can be successfully applied to error estimation in weighted norms.
引用
收藏
页码:505 / 521
页数:17
相关论文
共 50 条
  • [21] Functional a posteriori error estimates for problems with nonlinear boundary conditions
    Repin, S.
    Valdman, J.
    JOURNAL OF NUMERICAL MATHEMATICS, 2008, 16 (01) : 51 - 81
  • [22] A posteriori error estimates for elliptic variational inequalities
    Kornhuber, R
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (08) : 49 - 60
  • [23] Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems
    Lakkis, Omar
    Makridakis, Charalambos
    MATHEMATICS OF COMPUTATION, 2006, 75 (256) : 1627 - 1658
  • [24] Sharp upper global a posteriori error estimates for nonlinear elliptic variational problems
    János Karátson
    Sergey Korotov
    Applications of Mathematics, 2009, 54 : 297 - 336
  • [25] Two-sided a posteriori error estimates for mixed formulations of elliptic problems
    Repin, Sergey
    Sauter, Stefan
    Smolianski, Anton
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) : 928 - 945
  • [26] A Posteriori Error Estimates for Elliptic Eigenvalue Problems Using Auxiliary Subspace Techniques
    Stefano Giani
    Luka Grubišić
    Harri Hakula
    Jeffrey S. Ovall
    Journal of Scientific Computing, 2021, 88
  • [27] REDUCED BASIS APPROXIMATION AND A POSTERIORI ERROR ESTIMATES FOR PARAMETRIZED ELLIPTIC EIGENVALUE PROBLEMS
    Fumagalli, Ivan
    Manzoni, Andrea
    Parolini, Nicola
    Verani, Marco
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (06): : 1857 - 1885
  • [28] Sharp upper global a posteriori error estimates for nonlinear elliptic variational problems
    Karatson, Janos
    Korotov, Sergey
    APPLICATIONS OF MATHEMATICS, 2009, 54 (04) : 297 - 336
  • [29] A POSTERIORI ERROR ESTIMATES FOR ELLIPTIC PROBLEMS WITH DIRAC MEASURE TERMS IN WEIGHTED SPACES
    Pablo Agnelli, Juan
    Garau, Eduardo M.
    Morin, Pedro
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (06): : 1557 - 1581
  • [30] A posteriori error estimates based on the use of weakened Sobolev' spaces for elliptic problems
    D'yakonov, EG
    DOKLADY AKADEMII NAUK, 1998, 358 (06) : 734 - 738