Investigation on the Performance of a New Multiple Choice Strategy for PSO Algorithm in the task of Large Scale Optimization Problems

被引:0
作者
Pluhacek, Michal [1 ]
Senkerik, Roman [1 ]
Zelinka, Ivan [1 ]
机构
[1] Tomas Bata Univ Zlin, Fac Appl Informat, Zlin 76001, Czech Republic
来源
2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2013年
关键词
Evolutionary algorithm; Particle swarm optimization; PSO; optimization;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, a novel strategy for particle swarm optimization is presented and investigated over its ability to improve the performance of PSO algorithm in the task of large scale optimization problems. This proposed strategy alters the way the velocity of each particle is determined. Promising results of this innovative strategy are presented in the results section and briefly analyzed.
引用
收藏
页码:2007 / 2011
页数:5
相关论文
共 13 条
[1]  
[Anonymous], 2001, SWARM INTELLIGENCE J, DOI DOI 10.1007/S00897020553A
[2]   A PSO-based algorithm for optimal multiple chiller systems operation [J].
Beghi, Alessandro ;
Cecchinato, Luca ;
Cosi, Giovanni ;
Rampazzo, Mirco .
APPLIED THERMAL ENGINEERING, 2012, 32 :31-40
[3]  
Behrooz Ostadmohammadi Arani, 2013, SWARM EVOLUTIONARY C
[4]  
Dorigo M., 2006, Ant Colony Optimization: Artificial Ants as a Computational Intelligence Technique, Institut de Recherches Interdisciplinaires et de Developpements en Intelligence Artificielle: Technical report number TR/IRIDIA/2006-023
[5]  
Goldberg D.E., 1989, GENETIC ALGORITHMS S, P41
[6]  
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
[7]  
Keshavarz A., 2013, COMMUNICATIONS
[8]   A novel particle swarm optimization algorithm with adaptive inertia weight [J].
Nickabadi, Ahmad ;
Ebadzadeh, Mohammad Mehdi ;
Safabakhsh, Reza .
APPLIED SOFT COMPUTING, 2011, 11 (04) :3658-3670
[9]  
Pluhacek M., 2013, COMPUTERS M IN PRESS, DOI [10.1016/j.camwa.2013.01.016, DOI 10.1016/J.CAMWA.2013.01.016.ARTICLE]
[10]   A modified particle swarm optimizer [J].
Shi, YH ;
Eberhart, R .
1998 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION - PROCEEDINGS, 1998, :69-73